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Preface 
This report summarizes research for Grant No F49620-93-1-0620 for the 19 

months from September 1993 to April 1995. We give a general overview of the work 
in the introduction with more detail provided in later chapters. 
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1  Introduction 
We have undertaken a broad range of research for developing image under- 

standing techniques to infer 3-D shape descriptions of the scene from sensed data 
which may consist of monocular images, stereo pairs, motion sequences or range data 
(such as from LADAR), to recognize the objects in the scene, and to keep integrated 
temporal descriptions in dynamic scenes. These activities are central to almost any 
IU application task such as target recognition, photo-interpretation, navigation and 
object manipulation. Much of the past work in IU attempted to find solutions to these 
problems in highly specialized domains. While this approach may be necessary for 
some short-term applications, it requires extensive development for each new task. 
Worse yet, such techniques fail to be robust for the specific applications, as the limit- 
ing assumptions are easily violated. Instead, we follow an approach of generic vision 
that applies to large classes of objects and scenes and is based on broad and generic 
assumptions. We also use mathematically rigorous constraints derived from the ge- 
ometry of the image formation process. 

This chapter gives a brief outline of our work over the last 18 months with ref- 
erences to the later chapters of this Final Technical Report. 

1.1 Analysis of Range Images 

The goals of our effort in Range image understanding are to generate rich de- 
scriptions from sensed 3-D data. These descriptions should be segmented and capture 
both the volumetric and surface information related to objects. One of the applications 
is the automatic generation of 3-D models from multiple range images. We describe 
in more detail four specific aspects of our research: 

• the integration of multiple range images into a surface representation of the 
object (in Chapter 2) 

• a framework to handle complex objects with holes or multiple components (in 
Chapter 3) 

• an approach to generate volumetric part descriptions from a surface represen- 
tation of an object (in Chapter 4) 

• the inference of surface shape from sparse three-dimensional data using per- 
ceptual organization (in Chapter 5). 

1.2 Object Descriptions from Intensity Images 

This is one of the most difficult, but important, tasks in IU. Scene segmentation 
is difficult, as different types of features such as object boundaries, surface orientation 
isocontinuities, surface markings, shadows and noise cannot be directly distin- 
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guished. We use a process of perceptual organization to compute the higher-level de- 
scriptions in such cases. To be generic, perceptual grouping methods must use general 
methods. One method propagates the influence of local features over large vector 
fields and finds the most salient features. For higher level groupings, we use methods 
based on utilizing projective properties of contours of a class of objects. We have cho- 
sen generalized cylinders (GCs) as suitable volumetric representations. A few types 
of GCs (and their combinations) can represent a large fraction of the man-made ob- 
jects in our environment. In recent research, we have developed some very powerful 
invariant (and quasi-invariant) symmetry properties of projected contours of GCs. 
Our studies indicate that we can use these properties to segment objects, fill gaps 
even in presence of occlusion and infer 3-D shapes from monocular images. This is de- 
scribed in more detail in Chapter 6. 

1.3 Object Recognition 
Most object recognition systems today address the problem of finding the loca- 

tion and orientation of an exactly known rigid object in a scene.However, these ap- 
proaches cannot be extended to more general scenarios because objects may be very 
similar while being geometrically different. Consider for instance two different air- 
planes which have similar features but different geometries. In other words, generic 
recognition should not make use of methods based purely on the exact geometric 
structure of the object. It is clear that the only way to solve this difficult problem is to 
reason about parts and their arrangements.We describe two aspects of our research 
designed to achieve this difficult goal: 

• the generation of rich, stable descriptions from images, and the use of percep- 
tual grouping laws to achieve this task (see Chapter 7) 

• the development of an alignment-like pose estimation technique for multi-part 
curved objects (see Chapter 8). 

1.4 Indoor Navigation and Dynamic Scene Analysis 
We have been developing a vision system for indoor robot navigation. This sys- 

tem is based on a Denning mobile robot with a trinocular vision system. Our objective 
is to use generic descriptions of the path (go past the desk on your right and go 
through the first open door) rather than a detailed specific map. Currently our robot 
is able to navigate in laboratory environments avoiding obstacles and using objects 
such as doors and desks for landmarks. 

We have also studied the problem of navigation in an environment which we 
model as we go. Specifically, we consider the problem of building a model of a scene, 
so that a similar sensor could, at a later time, orient itself with respect to this repre- 
sentation. We describe two aspects of this work in navigation: 

• the representation of the spatial environment for indoor navigation (see Chap- 
ter 9) 
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the recognition and location of generic objects (see Chapter 10). 
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2 Description of Complex Objects 
from Multiple Range Images Using 

an Inflating Balloon Model 
Yang Chen and Gerard Medioni 

We address the problem of constructing a complete surface model of an object us- 
ing a set of registered range images. The construction of the surface description is car- 
ried out on the set of registered range images. Our approach is based on a dynamic 
balloon model represented by a triangulated mesh. The vertices in the mesh are 
linked to their neighboring vertices through springs to simulate the surface tension, 
and to keep the shell smooth. Unlike other dynamic models proposed by previous re- 
searchers, our balloon model is driven only by an applied inflation force towards the 
object surface from inside of the object, until the mesh elements reach the object sur- 
face. The system includes an adaptive local triangle mesh subdivision scheme that re- 
sults in an evenly distributed mesh. Since our approach is not based on global 
minimization, it can handle complex, non-star-shaped objects without relying on a 
carefully selected initial state or encountering local minimum problem. It also allows 
us to adapt the mesh surface to changes in local surface shapes and to handle holes 
present in the input data through adjusting certain system parameters adaptively. 
We present results on simple as well as complex, non-star-shaped objects from real 
range images. 

2.1  Introduction 
The task of surface description using 3-D input can be described as finding a fit 

of a chosen representation (model surface) to the input data. This process can be for- 
malized in a number of ways involving the minimization of a system functional that 
explicitly or implicitly represents the fit of the model to the input data. Another very 
important aspect of such a system is to construct a mapping or correspondence be- 
tween the surface of an object and the structure of the model. This mapping exists be- 
cause the surface of the model and the surface of the object are topologically 
equivalent, considering genus zero type of objects. Therefore there exists a one-to-one 
mapping between the model structures and the object surface elements. Previous re- 
searchers have studied such mappings in a variety of ways using different represen- 
tation schemes and model fitting methods. Examples of these approaches include the 
dynamic system using energy minimization in [4] and the dynamic mesh in [12] and 
[13]. The drawbacks of these approaches is that they must rely on an initial guess of 
the model structure which is relatively close to the shape of the object. The reason is 
that, in the absence of mapping or correspondence information, some other approxi- 
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Figure 2.1 The inflating balloon model as illustrated in a 2-D case: (a) 
the initial state, (b) and (c) intermediate states, (d) the final state. 

mations have to be used, such as the nearest data point to the model [13] in order for 
the system to converge to the desired results under the attraction force between the 
correspondence points in the model and the data. Such an approximation would have 
problems in cases where there are data points that are not the closest to their true 
corresponding points of the model, and thus inevitably lead the system towards a sub- 
optimal situation (local minimum). This is why those approaches can only deal with 
star-shaped objects. 

In this paper we present a new approach for surface description using a dynamic 
balloon model represented by a triangular mesh. We start with a small triangulated 
shell placed inside the object and apply a uniform inflation force on all vertices in the 
direction normal to the shell's surface. The vertices are also linked to their neighbor- 
ing vertices through springs to simulate the surface tension and to keep the shell 
smooth. The applied inflation force moves the vertices towards the object surface until 
they "land" on it. This process is similar to that of blowing up a balloon placed inside 
the hollow object until it fits the shell of the object. Thus the goal of mapping the mod- 
el to the object surface is achieved through the physics of a growing balloon in a very 
natural way (see Figure 2.1 ). Of course, we also need to handle noisy data, and holes 
(lack of data), as described later. 

Our system is not based on global minimization methods, and it can make deci- 
sions based on local information about the shape of the object surface. During the pro- 
cess of the growth of the triangular mesh, the triangles will be subdivided 
dynamically to reduce spring tension and to allow the mesh surface area to increase 
in order to cover the larger object surface. As the mesh expands and the vertices start 
to reach the object surface, the entire mesh surface is gradually subdivided into pieces 

Final Technical Report 



of connected triangular regions, which allows us to treat the surfaces in a local context 
by tailoring the parameters, and possibly strategy, of the system in dealing with each 
region separately based on local information. 

Another aspect of our approach is its role in data integration. Most of the previ- 
ous research make use of scattered 3-D points or a single range image as input. Very 
few researchers (e.g. [10]) try to use multiple densely sampled range images. There 
are two difficulties in using these range images. First the images must be precisely 
registered. We have previously presented a method [1] to register multiple range im- 
ages, which is used to register the range images used in this paper. The second is the 
issue of integration. Integration can not be performed without an appropriate repre- 
sentation for the integrated data. While star-shaped objects can be simply mapped 
onto a unit sphere, and the integration can then be performed easily [1]. This is not 
true for complex objects, since it is difficult to find an integrated representation. Thus 
finding a suitable representation is very important. While it is not the main theme of 
this paper, we believe that our approach leads to a good solution to combine and take 
advantage of multiple range images in surface description for complex objects in 
terms of integration. 

In the following sections, we first review some of the related previous work and 
then present our balloon model in detail. Section [2.3] describes our surface model and 
how it works, Sections [2.4] and [2.5] define the dynamics of the system. Section [2.6] 
explains the adaptive mesh subdivision scheme. In Sections [2.7] and 8, we give an 
algorithmic description of our system and describe how to set system parameters. Sec- 
tion Chapter 2 discusses issues on how to adapt the parameters locally and dealing 
with noise. Several test results from real range images, from both simple and complex 
objects, are presented in Section [2.10]. The conclusion follows in Section [2.11]. 

2.2 Related Work 
Dynamic mesh models have been proposed by previous researchers for shape de- 

scription. [12] introduced a shape reconstruction algorithm using a dynamic mesh 
that can dynamically adjust its parameters to adapt to the input data. [13] then ex- 
tended this approach by introducing an attraction force from the 3-D input for shape 
description. [6] also proposed a similar system with dynamic nodal addition/deletion 
for shape description and nonrigid object tracking. [4] proposed a deformable model 
with both internal smoothness energy and external forces from both the input data 
and features. There exist other deformable model approaches that differ in the repre- 
sentation schemes of the model and in the approaches to solving the system [5][11]. 

The main difference between our method and those used by previous research- 
ers is that we do not explicitly introduce a data force into our model, as discussed in 
details in the following sections. Our model is driven by an inflation force introduced 
inside the balloon. Balloon models have been used by [3] and [7], but in these ap- 
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proaches, the introduced balloon force is used mostly to overcome noise in the data so 
that the system can converge to the desired results more easily. 

2.3  The Inflating Balloon Model 

Our balloon model is represented by a shell of triangulated patches. The initial 
triangulated shell is an icosahedron. A triangulated shell can be either considered as 
a mesh consisting of triangular patches or a mesh consisting of vertices (or nodes) con- 
nected to their neighbors. In the following discussion, a mesh element may refer to 
either a vertex or a triangle patch. But in this paper, we mainly explore the properties 
of the vertices. 

When placed inside the object, and under the influence of the inflation force, the 
shell grows in size as the vertices move along the mesh surface normal in the radial 
direction, maintaining an isotropic shape, until one or more vertices reaches the ob- 
ject surface. During the process of inflation, the triangles may be subdivided adapti ve- 
ry, which also creates new vertices. Once it reaches the surface, a vertex is considered 
anchored to the surface and thus can no longer move freely. The remaining vertices, 
under the influence of the anchored vertices, will gradually change their course of 
movement, until finally reaching their corresponding surface point. As can be seen 
from this process, the movement of the vertices is not influenced directly by any force 
from the surface of the object. This seems to be bad from the viewpoint of a fitting pro- 
cess, which tries to minimize some distance measure between the object surface and 
the model. But this is important to us because our main concern is to find the mapping 
between the mesh elements and the object surface. Not using any attraction force 
from the surface data allows us to avoid incorrect mappings, which is a similar situ- 
ation to the local minimum problem in energy minimization approaches. An example 
of the growing balloon is shown in Figure 2.2 . 

2.3.1 The Correspondence Problem 

So far, we have not discussed how to test whether the mesh has reached the sur- 
face of the object. This is the key difference between our approach and other dynamic 
model systems or energy minimization systems. In order to test whether a vertex has 
reached the object surface, one must measure the distance between the mesh surface 
and some point on the object surface. Ideally this point on the object surface should 
be the corresponding point of the vertex, which is not possible before the vertex reach- 
es the surface. Previous researchers have used the closest point on the object surface 
to an mesh element as an alternative, but it may provide incorrect information. In [7] 
the distance from the data points on the surface to the nearest model point is used 
instead, which is an improvement over the above approach. This approach, however, 
is not practical when there is a large number of surface sample points from the object, 
as in our case. 

In our approach, we look for potential corresponding points only in the direction 
normal to the mesh surface. This is the best knowledge locally available to the points 
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Figure 2.2 Stages of an inflating balloon inside the Phone, showing the 
movement of the right front only (see Section Chapter 2). The wireframes are 
superimposed with sample points from the used range images. 

on the mesh surface at any time during the mesh's growing process, because the 
equivalent mesh surface movement in the neighborhood of a mesh element is only in 
the direction normal to the mesh surface. So it is only natural to look for correspond- 
ing point from the object surface in the direction of the normal, which also changes in 
the process of inflation. In our implementation, this is done by computing the prospec- 
tive correspondence point P (Figure 2.3 ), the closest intersection of a line in the nor- 
mal direction and the object surface represented in range images (see Appendix for 
details). Once the intersection is found, the distance from the mesh surface to the in- 
tersection can be used as a measure of whether the mesh has reached the object sur- 
face. 

When there are holes in the input data (parts of the object surface not covered 
by the input data), we will not be able to find the intersections described above. In 
such cases, there are no prospective correspondence points for the affected vertices 
and thus there is no reason to continue applying inflation force. This kind of decision, 
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Anchored Vertices 

Balloon fronts 

Figure 2.3 Line-Surface intersection: searching 
for a correspondence point in the normal direction. 

however, should not be made locally for each vertex point. We will discuss the han- 
dling of holes when we discuss our algorithm in details later, in Section [2.8]. 

2.4 A Simplified Dynamic Model 

The motion of any element i on the model surface can be described by the follow- 
ing motion equation [12]: 

mJii + rje+g. = fv    i = 1...JV (2.1) 

where xi is the location of the element, ai^and x. are the first and second deriva- 
tives with respect to time, mi represents the mass, r; is the damping coefficient, g; is 
the sum of internal forces from neighboring elements due to, e.g., spring attachments 
and/j is the external force exerted on the element. Because of the nonlinear nature of 
the forces gj and/j involved, the systems of ordinary differential equations in Equa- 
tion (2.1) can be solved using explicit numerical integration [12]. 

The dynamic system will reach the equilibrium state when both xt and x\ be- 
come 0, which can take a very long time since it is usually an exponential process. A 
simplified system can be obtained if we make mj = 0, and rt - 1 for all i, in which case 
Equation (2.1) reduces to 

x = ft-gi,    i=l...N (2.2) 

There are several reasons for this simplification. First, a zero-inertia system is 
simpler and easier to control. Second, since there is no inertia, the system will evolve 
faster in general. Although we are not seeking an equilibrium state for the entire sys- 
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tern, a simplified system will help speed up reaching local equilibrium states and 
therefore accelerate the overall dynamic process. Third, a simplified system involves 
less computation. Also, since we do not intend to have a special treatment for any par- 
ticular elements in the mesh at this time, all rt should be equal, in which case we can 
normalize the parameters so that rt = 1. The set of first-order differential equations 
in Equation (2.2) has a very simple explicit integration form as follows: 

x+At = (/{-*lU+*' (2.3) 

2.5  Spring Force and Inflation Force 
The spring force exerted on vertex i by the spring linking vertex i and./' can be 

expressed as [12]: 

lJ    INI J 

where ctj is the stiffness of the spring, etj = ||rJ| - ltj is the spring deformation, 
rr = x.-xt, || || is the vector length operator and Z-. is the natural length of the 
spring. The total spring force gi a vertex receives is the vector sum of spring forces 
from all springs attached to it. 

The inflation force a vertex receives takes the form of: 

Ä- = knt (2.5) 

where k is the amplitude of the force and ht is the direction normal to the local 
model surface. In our implementation, the normal at a mesh vertex is estimated from 
the vector sum of the normal vectors of the surrounding triangles: 

Ai = ^       n^vfv + %. (2-6) 
ill IIv   y       y 

where ntj is the direction normal to thej'th triangle Tj € {Tß surrounding the 
vertex, and ri.. is the direction normal to triangle T". that is the neighbor of 2\ but 
T-t { T} . This estimation is more stable than the one we get when only the trian- 
gles in {Tt} are used. 

2.6 Subdivision and Adaptation of the Triangular Mesh 
In a simulated physical system, during the process of the growth of the mesh 

model, the mesh triangles increase in size, and tensions due to the spring force also 
build up, which eventually stops the movement of the mesh, as the inflation force and 
the spring tension equalize. This is not desirable in our system since we do not con- 
sider force from the input data, so that an equilibrium state does not mean a good fit. 
In order to keep the balloon growing, we can keep the inflation force unchanged 
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(which actually means to keep on inflating) and at the same time reduce the spring 
tension by subdividing the triangles in the mesh into smaller triangles. Alternatively, 
we can increase the inflation force and allow the spring tension to increase. But in- 
creasing the inflation force also has the side effect of increasing the maximum dis- 
placement. As can be seen from Equation (2.3), the spring force gt usually acts as a 
balance force to the inflation force/j = ht (assuming a convex local structure), thus the 
maximum displacement is directly related to the inflation force once a time step is 
chosen. So we choose not to increase the inflation force in our system, but to subdivide 
the mesh instead. 

The purpose of subdividing triangles is twofold. Once a triangle is subdivided, 
the sides of the triangles becomes shorter and if we keep the natural length and stiff- 
ness of the springs constant, the spring tension is reduced. Also, subdividing the tri- 
angles helps maintain an evenly distributed mesh. Subdividing triangles in a certain 
region, as will be discussed later, also allows the mesh surface to adapt to the local 
object surface geometry without affecting other parts of the mesh surface. 

Before introducing the details of the triangle subdivision process, we first define 
some terms. 

A vertex is said to be anchored if it has reached the object surface and has been 
marked as such. A triangle is said to be anchored if all of its vertices are anchored. At 
any time in the mesh growing process, the triangles in the mesh can be classified into 
anchored triangle regions, consisting of anchored triangles, and unanchored triangle 
regions, consisting of movable triangles, called front. Each front is a connected com- 
ponent of triangles, in which two triangles are said to be connected iff they share an 
edge. 

2.6.1 Adaptive Triangle Mesh Subdivision 

Triangle subdivision is carried out only on the front, since anchored triangles are 
not allowed to move. This allows the triangular mesh to adapt to the object surface 
better without globally adjusting the position of all vertices. A good subdivision 
scheme is one that yields an evenly distributed mesh and produces few degenerate 
(i.e. long and thin) triangles. The algorithm that we use in this paper first selects a 
set of triangles that needs to be subdivided through bisection. Then, after these trian- 
gles are bisected on their longest edges, adjacent triangles are also bisected or trisect- 
ed to make the triangles conforming, the state in which a pair of neighboring triangles 
either meet at the a vertex or share an entire edge. In our implementation, only those 
triangles that exceed certain size limit are subdivided first. The algorithm presented 
below is adapted from Algorithm 2 (local) in [8], which is developed for refining trian- 
gular mesh for finite element analysis. 
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2.6.2 Algorithm 1 

Let T- be the set of the triangles from a given front, and TQ C T^ is the selected set of 
triangles to be subdivided. 

1) Bisect T by its longest edge, for each T £ xQ. 

2) Find i?j c xQ the set of non-conforming triangles generated in step 1. Set k <- 1. 

3) For each Te Rk with non-conforming point PeT (mid-point on the non-con- 
forming edge): (a) bisect Thy the longest edge; (b) if P is not on the longest edge 
of the T, then join P with the midpoint of the longest edge. 

4) Let TQ be the triangulation generated in step 3. Find Rk + { c T* the set of non- 
conforming triangles generated in step 3. 

5) If Rk +1 = {0}, stop, the subdivision is done. Else, set k <- k + 1 and go to step 
3. 

This subdivision algorithm has the feature that the subdivision is only propagat- 
ed towards large triangles from the longest edge of a subdivided triangle. It is also 
proven that the resulting triangles' smallest inner angle is lower-bounded by half of 
the smallest inner angle of the original triangles [8]. 

This algorithm, however, does not guarantee that the triangles on the boundary 
areas of a front conform with the rest of the triangles in the triangulation. Hence, af- 
ter the algorithm terminates, we must bisect the affected non-conforming triangles 
accordingly. Thus we have: 

2.6.3 Algorithm 2 

1) Carry out Algorithm 1 on the set of triangles T0C^. 

2) For each non-conforming triangle TC^ but connected to T^, bisect Tby its 
non-conforming edge. 

An example of the result from this algorithm is shown in Figure 2.4 , where tri- 
angle A is to be subdivided and C does not belong to the region (front). As can be seen 
from the figure, the subdivision is propagated to B, and finally C is bisected to make 
the triangles at the region boundary conforming (step [2] above). 

2.6.4 Local Mesh Adjustment 

The above algorithm works very well under most circumstances, but degenerate tri- 
angles that are long and thin may still occur. These triangles are undesirable since 
they do not represent local surface shape well and are often the cause of self-intersec- 
tion of the mesh surface. Currently, we use a simple algorithm that checks for pairs 
of such triangles and rearrange the triangle configuration locally. After each subdivi- 
sion, we check for triangles that are thin and long, and if two such triangles share an 
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(a) (b) 

Figure 2.4 Subdivision of triangle mesh, (a) before A is 
subdivided, (b) after A is subdivided and the subdivision is 
propagated to both B and C. 

Figure 2.5 Rearranging the local 
configuration to eliminate long and thin 
triangles 

edge that is the longest for both triangles, then we simply switch the cross edge as 
shown in Figure 2.5 . 

2.7 Description of the Algorithm 

In this section we give a brief description of the entire algorithm of our approach. 
A discussion on how to set the system parameters will follow. We assume that regis- 
tered range image views of the object to be modeled are available, although we believe 
the algorithm can be adapted to other types of 3-D input. 

We start with selecting an initial point inside the object and constructing an 
icosahedron shell [13] at this location. The selection process is currently done by hand 
and the size of the shell should be small enough so that it is completely inside the ob- 
ject. Since the algorithm does not depend on the actual location of the initial shell, as 
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long as it is inside the object, an alternative to manually selecting the initial position 
is to choose a smooth patch in any range image and place the shell under the patch. 
The system algorithm can be described as follows. 

2.7.1 Algorithm 3 

Let all the triangles on the initial mesh be front F0 and push it into the front 
queue Q, then until queue is empty, do the followings repeatedly: 

1) F <= top of the queue Q, pop the queue. 

2) Subdivide the triangles in F if appropriate (see next section). 

3) For each vertex Vt £ F, whose 3-D coordinates at time t is v/, do 

a) compute the internal force gt and external force ft = Ä, based on Equations (2.4) and 
(2.5). 

b) compute the new vertex location v/+A/ for the current iteration according to Equation 
(2.3). 

c) compute prospective correspondence point of v{-, which is the intersection wt of the sur- 
face and the line through v,- and in the direction of the mesh normal at v,- (see below). 

d) if v•+ At - v-   >  w■ - v- , then v/+At t= wt and mark vertex Vt anchored. 

4) For each Vt £ F, update its position with the corresponding new positions v/+   . 

5) Discard triangles from F that have thus become anchored (section [2.6]). 

6) ifF =  {0} then go to 1. 

7) recompute connected triangle regions in F and push them into Q. Go to 1. 

In step (3)(c) above, an algorithm that computes the intersection between a 3-D 
line and the object surface in range image form is called for. This algorithm gives the 
closest intersection of a line, which passes through a given vertex point and is in the 
direction of the estimated local mesh surface normal at the vertex, and the object sur- 
face (point P in Figure [2.3]). This is for the purpose of estimating the distance of the 
vertex to the prospective corresponding points on the surface of the object (Section 
[2.3.1]). Details of the algorithm can be found in the appendix. 

2.8  Setting up the Parameters 
In our current implementation, triangles that have areas larger than a thresh- 

old St are subdivided at each iteration. St is directly related to the precision of the fit 
of the final mesh to the input surface data. Assuming that our goal is to approximate 
the object surface to have a triangle fitting error 5 for surfaces with maximum curva- 
ture of 1/Rt, St can be easily computed by tessellating a unit sphere of radius Rt 

with equilateral (or near equilateral) triangles of sizes smaller or equal to St. This 
also gives us a sample configuration of an ideal front structure when the maximum 
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mesh tension is achieved. Let /,„„.,,  „„„ be the maximum spring force exerted onto 
OP i   i flrQ fib Or PC ^"^ 

a vertex under such conditions. The inflation force needed to overcome the spring 
force (in order for the vertices to move) is therefore 

'inflate     'spring-max \*"') 

The inflation force is also constrained by Equation (2.3), since once a time step and a 
maximum displacement per iteration are set, the allowed inflation force should then 
be (considering 0 spring force): 

dmax 
finflate ~ ~£f (2-8) 

where dmax = max(||x -x |) is the maximum displacement. Since a large infla- 
tion force tends to dominate the mesh's evolution, which is undesirable, we prefer a 
smaller one. We choose to use the minimal inflation force as shown in Equation (2.7). 
We can then compute the needed inflation force amplitude k according to Equation 
(2.5). 

Now the whole issue comes down to determining/" . „„„, dm„„ and the time 
step At. The maximum spring force is determined by the spring natural length li. and 
the spring stiffness which are related (Equation (2.4)). In our experiments, we have 
used I.. = 0 and c-- = 4.0. dmny. and At are selected to allow the mesh to evolve 
smoothly and quickly relative to the object size and complexity. For all the tests in this 
paper, we have used 2mm and 0.05 respectively. 

Finally, the user needs to select 5 and Rt. For the purpose of simplicity, in our 
experiments, however, we manually set Rt and allow a fixed number of Ntriangles to 
fit the sphere with a radius Rt, which gives a nominal approximation error of about 
0.6mm with N = 80 and Rt = 10mm. 

2.9 Adaptive Local Fitting, Holes and Noise 

It is also worth mentioning that our algorithm is parallelizable since the compu- 
tations on each front in the queue Q are independent of each other. Furthermore, the 
computation for each vertex within each front is also independent during each itera- 
tion. 

Another advantage that this computation structure brings us is that we can 
adaptively adjust system parameters independently for each front based on the infor- 
mation that we gather from the prospective correspondence points of the vertices in 
the front. For example, if we have detected that the movement of the front is virtually 
stopped and yet the prospective correspondence points are still certain distance away, 
this tells us that the preset parameter Rt in previous section is too large and we should 
adjust it accordingly. 

Another example of such adaptation is in handling holes in data. In this case, 
there exist areas of the object surface that are not covered by any of the input range 
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images, we will not be able to find prospective correspondence points for some of the 
vertices in the related front. Eventually, when the rest of the vertices in the front have 
settled down to their correspondence points, we are left with a front for which none of 
the vertices have a prospective correspondence point. In such situations, the system 
automatically sets the inflation force to zero (k = 0 in Equation [2.5]), which makes 
the mesh reach an equilibrium state that interpolates the surface over the hole. 

Another important issue is the issue of noise. There are two type of noises that 
may affect out results. One is the noise introduced by the small misalignment among 
the range images. The other is the spontaneous outliers from each range image. Our 
system is very stable with respect to both types of noise. The first one is effectively 
solved by the weighted sum line-surface intersection algorithm (see Appendix) since 
the misalignment causes the actual intersections to form a cluster. The second type of 
noise usually cause the intersection algorithm on the related range image to fail to 
converge, in which case it does not contribute to the result of the intersection. Even if 
the noise does produce a wrong intersection, it can easily be filtered out as an outlier 
that does not belong to the correct cluster. 

2.10 Test Results 
We now present examples of our system in modeling a telephone handset 

(Phone) and an automobile part (Renault) using 20 and 24 range image views respec- 
tively, along with two examples for simpler objects. The range images are acquired us- 
ing a Liquid Crystal Range Finder (LCRF) [9], and then registered using the range 
image registration algorithm described in [1]. Some sample range images used in the 
experiments are shown in Figure 2.6 . Figure [2.7] shows two examples of the balloon 
model in fitting two simple objects: the Wood Blob and the Tooth. In Figure 2.8 , the 
final rendered views of the constructed model of the Phone are shown below the wire- 
frame drawing. Figure 2.9 shows a wireframe and the rendered image of the Renault 
part. The final model for the Phone has 1694 vertices and 3384 triangles, the Renault 
part has 2850 vertices and 5696 triangles. The total run time excluding registration 
on a Sun Sparc-10 running Lucid Common Lisp version 4.0 is 1617" for the Phone and 
32'26" for the Renault. Both the Phone and the Renault part measure about 200mm 
across their longer sides. Note that the wireframe drawings in the presented results 
are not produced using a hidden-line elimination algorithm, which is the cause of 
most of the spurious triangles seen in the wireframe drawings, including the "defects" 
in the middle which actually corresponds to a step at the back of the object. 

As can be seen from the results presented above, our algorithm works very well 
for both simple, compact objects, as well as non-star shaped objects with complex 
structures. The resulting triangulated model surfaces preserve most of the important 
geometry feature of the objects with evenly distributed meshes. Our initial guess are 
all set in the neighborhood of the center of the objects and yet our balloon can success- 
fully grow to cover all parts of the object with complex geometric structures such as 
the Renault part. Also, it is hard to visualize this, but the data that we use for the 
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Figure 2.6 Sample range images used in constructing the Phone 
model and Renault model in Figures [2.8] and [2.9], shown here 
as shaded intensity images. 

Renault part contain holes on top of both of the arms, and the resulting mesh was able 
to interpolate them very well. There is, however, a defect under the right arm of the 
Renault part, as can be seen in the wireframe drawing. It is a small opening in the 
mesh that tends to self-intersect which is caused by a small narrow ridge section 
(about 8mm thick, much smaller than 2 times Rt, where Rt = 10mm). We believe that 
this can be solved by examing and identifying local surface changes more closely and 
adjusting system parameters accordingly in that area. 

2.11  Conclusions and Future Research 

We have presented a surface description method based on a dynamic balloon 
model using a triangular mesh with springs attached to the vertices. The balloon 
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Figure 2.7 Examples of the balloon model for fitting simple objects: (a) 
the original intensity images of the objects, (b) the wireframes of the 
obtained balloon models and (c) the rendered shaded images of the 
models, 

model is driven by an applied inflation force towards the object surface from inside of 
the object, until all the triangles are anchored onto the surface. The model is a phys- 
ically based dynamic model and the implementation of the algorithm is highly paral- 
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(a) 

(b) 

(c) 

Figure 2.8 The final balloon model for the Phone: (a) 
wireframe (b), (c) smoothly shaded. 

lelizable. Furthermore, our system is not a global minimization based approach and 
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Figure 2.9 The wireframe and the rendered image of the 
reconstructed model for the Renault automobile part. The 
inserted picture is the intensity image of the actual object. 
Note that the wireframe is not produced by a hidden-line 
removal algorithm (see Section Chapter 2 on page 17). 

can allow the model to adapt to local surface shapes based on local measurements. 
Tests showed very good results on complex, non-star-shaped objects. 
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As stated earlier, our goal is to achieve a correct mapping of a triangulated mesh 
to the surface of an object, hence there are still many ways to improve the resulting 
model we have achieved, including using the algorithms presented in [2] to improve 
triangle fitting errors, or the method in [10] to merge small triangles into larger ones 
without affecting the fitting error for constructing a hierarchical representation. Lo- 
cal smooth patches can also be constructed for high level surface property analysis. 
Alternative surface models, such as a smooth finite element surface model ([7]), can 
also be used so that the implementation of the system elements can be made more 
precisely. In addition, our future research consists of detecting and avoiding possible 
self-intersections of the mesh surface. 
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2.13 AppendixThe Line-Surface Intersection Algorithm 
We describe an algorithm for computing the intersection of a directed line (a ray) 

and the object surface represented by a set of registered range images. This algorithm 
is based on the line-surface intersection algorithm in [1], which computes the inter- 
section between a line and a digital surface represented by a single range image. 

We begin with a brief description of the original algorithm. As shown in 
Figure 2.10 , we are given a directed line / that passes through a certain point/?, the 
intersection, q, of / and the surface Q can be computed as follows. We first project p 
onto Q in its image space and find the tangent plane of Q at the projection. Then we 
compute the intersection q° of the plane and I, which becomes the first approximation 
of the intersect we are looking for. We repeat the process by projecting the intersection 
approximation q1* onto Q at each iteration. When this process converges, the resulting 
intersection is taken as q. Note that in this approach, we also have a directional con- 
straint for the found intersection, which states that the local surface normal at the 
computed intersection point must be within 90° of the direction of the ray, which is 
the direction of the mesh surface normal in this paper. 

When we have more than one range images, the intersection of the line with all 
the range images are computed. Let {Q •}, i = 1... m, be the set of range images and 
/ be the line in consideration. The intersection of I and the surface { Qt} can be de- 
fined as the weighted sum of all the intersections: 

m 

£ aiwi<*i 
q = ±1 , «,. =  (nqt ■»,) (2.9) 
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Figure 2.10 Intersecting a line with a digital surface 
illustrated in a 2-D case. 

where qt is the intersection of / and Qi} n is a unit vector normal to Qt at qt, ng is the 
vector pointing towards the sensor and a/is a binary number depending on the inter- 
section of / and Qi, and 

a. = 1,  if the intersection exists 
0, if there is no intersection 

The reason behind taking a weighted sum of the intersection points is that the 
sensor measurement of the position of a surface point is less reliable if the local sur- 
face is facing away from the sensor. The weight wi is a reflection of this heuristic. In 
general, the sensor direction information ng is available from the range image sensor 
setup and calibration. For a Cartesian range image (depth map) without sensor infor- 
mation, we can simply take n3 = (0, 0,1)T. 

If there are more than one intersections between / and the object surface, we can 
perform a clustering to separate the intersections into groups corresponding to each 
real intersection, and choose the closest cluster to compute the above weighted sum. 
In practice, we have not had to use such a clustering algorithm. This is because the 
result of the intersection algorithm depends on an initial point p (which is the vertex 
point in this paper). When the vertices are far from the object surface, qt can be from 
any clusters. But we are less concerned with the actual location of the intersection at 
the time. As the mesh grows and the vertex get closer to the surface, almost all the 
intersections computed are from the closest cluster, since it is the closest local mini- 
mum when considering the intersection process as a minimization. For robustness 
purpose, we have implemented a simple filtering scheme to eliminate gross outliers 
in the intersections based on the distribution of the intersections found. 
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3  Surface Approximation of 
Complex 3-D Objects 

Chia-Wei Liao and G6rard Medioni 
Our goal is to generate a surface description of complex objects with parts and 

holes. We start by fitting a surface, assuming the object is of Genus 0, then analyze 
the result to further segment the description. 

In the first part of our algorithm, the system provides an initial estimated sur- 
face which is subject to internal forces (describing implicit continuity properties such 
as smoothness) and external forces which attract it toward the data points. The prob- 
lem is cast in terms of energy minimization. We solve this non-convex optimization 
problem by using the well known Powell algorithm which guarantees convergence 
and does not require gradient information. The variables are the positions of the con- 
trol points. The number of control points processed by Powell at one time is controlled. 
The process is controlled by two parameters only, which are constant for all our ex- 
periments. 

The above approach is not sufficient for complex objects with cavities, or for more 
than one object. We therefore propose an approach that can apply simultaneously 
more than one curve or surface to approximate multiple objects. Using (1) the residual 
data points, (2) the bad parts of the fitting surface, and (3) appropriate Boolean oper- 
ations, our approach is able to handle objects more complicated than Genus 0 or with 
deep cavities, and can perform segmentation if there is more than one underlying ob- 
ject. 

3.1  Introduction 

Range sensing is a mature technology, and there are many methods, such as 
time of flight and MRI, collect 3D data based on this technology. In addition to this, 
3D data can also be obtained in passive ways like stereo and shape from X methods. 
The data obtained from the above sources is in the form of points. 

But, in computer vision, what we need are some properties such as the curva- 
ture, normal, and principal directions. These quantities relate to the underlying sur- 
face, which is not made explicit in the original data. Furthermore, it is even more 
difficult if some ordering relation among the data points is not known. This happens 
mainly when we gather data points from various sources. Analytical surface construc- 
tion of a cloud of points (boundary points of the object) becomes important because it 
is much easier to extract the features from an analytical surfaces. So, we need some 
tools to construct an analytical description (for example, surface) for the collected 3D 
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data. A deformable model, which can give a analytical surface representation over a 
cloud of 3D data points, is able to serve this purpose. 

The idea of fitting data by a deformable model can be found in the work of Kass 
et al. [14] in 2D. Such models are generalized in 3D by the same authors [15] for a 
surface of revolution. 

There have been many works [16]-[29] derived from this seminal idea. But most 
of them either require many parameters, or cannot guarantee convergence (partially 
due to the use of gradient descent to minimize the energy). Furthermore, they suffer 
from the following problems: 

First, there may be more than one underlying object, and these objects might be 
close to one another. Most deformable model algorithms assume that there is only one 
object, that is, the segmentation has been done beforehand. It takes sophisticated seg- 
mentation to separate these mixed objects, and it is often the case that segmentation 
is much more difficult than the fitting process. 

Second, they cannot handle very well patterns with deep and narrow cavities. To 
capture a cavity directly through energy minimization, we need to differentiate be- 
tween the data points belonging to the cavities from the other points when defining 
the external energy. But this might lead to a circular problem. 

Third, without prior knowledge, most of them are insufficient for objects more 
complicated than Genus 0. 

Our proposed algorithm can deal with these problems appropriately. There are 
mainly two parts in our algorithm. In the first part, we focus on the Genus 0 surface 
fitting. We apply a tested numerical method which guarantees convergence. Through 
an coarse-to-fine approach and a partitioning scheme, the computational time is kept 
in check. By using the surface fitting algorithm in the first part and appropriate bool- 
ean operations, we develop another method that can accomplish data segmentation 
and handle objects with deep cavities or more complicated than Genus 0. 

3.2 Part 1: Genus 0 surface fitting 

3.2.1 Issues 

Several problems come with the algorithms dealing with deformable models: 

1. Huge computational time and space: Assuming MxN control points on the fit- 
ting surface, there are 3MN variables for this surface. Theoretically, we can just inject 
these 3MN variables into a minimization algorithm to minimize the energy of the fit- 
ting surface. This approach turns out to be impractical due to the unbearable compu- 
tational time when 3MN is large. Furthermore, most minimization algorithms need 
a matrix of size (3MN)x(3MN), which also results in huge space complexity. An adap- 
tive approach can just alleviate these problems, but cannot avoid these problems in 
the worst case, especially when all control points or patches are bad. 
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2. Constructing a smooth closed surface from the B-spline control points: we ob- 
tain a closed surface by closing the top and bottom parts of the rectangular mesh as 
depicted in Figure 3.1 . The problem is that the poles are not smooth when we try to 
construct a smooth surface directly from the control points. It is because these two 
poles are shared by many degenerate patches (triangular patches) around them. 

3. A good approximation of the data as the initial surface: the quality of the fit- 
ting result depends on the initial surface, and we would like the result to be invariant 
to the initial surface as long as the initial surface is not too bad. 

4. The convergence of the surface to the data points: the convergence of the fit- 
ting process should be guaranteed. By using the Powell [30] minimization routine, the 
convergence is guaranteed. 

All problems listed above are well handled by our algorithm for the surface fit- 
ting. 

3.2.2 Algorithm 

Now, we define some terms for further use. We define a Cap to be the triangular 
patches formed by a Pole and its adjacent control points. So, we always have two 
Caps. A Meridian (a line of constant u in parameter space) is defined to be the line 
connecting the two Poles, as depicted in Figure 3.1 . 

jtpole 

Before fitting C^>t<^> 

meridian 

After fitting ßspole 

cap' 
Figure 3.1 The initial closed surface and the definitions of 
Pole, Meridian, and Cap 

A flowchart of our algorithm is in Figure 3.2 . 

In our algorithm, we consider a sphere as composed of three parts, which are two 
caps and an open cylinder as shown in Figure 3.1 . These three parts are processed 
separately in our algorithm. 

Instead of injecting all MxN control points into the minimization procedure 
(which is possible but extremely expensive), we decompose the problem into a curve 
fitting problem followed by a (simpler) mesh fitting problem. 

Given that the caps are already in place, we select every other meridian and 
move their (M-4) control points, which are not shared with the two caps, to minimize 
their energy. We then select the remaining meridians and move their (M-4) control 
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Start 

I 
Initialize  the  tittmg surface 

Stage 1: Fit polar caps 

I 
Stage 2: Curve fitting (by adjusting every 

odd(resp. even)-indexed meridisn) 

Stage 3: Mesh fitting (by adjusting the rem- 
aining even(resp. odd)-indexed meridians. 

Refinement of "Fit Surface". 

Figure 3.2 The flowchart of the Genus 0 algorithm 

points, which are not shared with the two caps, to minimize the energy of the related 
patches this time. It is important to note, however, that only the bad segments (patch- 
es or curves) are injected into the minimization procedure (after the energy minimi- 
zation, we can guarantee that the associated energy of the bad segments is reduced, 
but some segments with higher external energy might still be bad). Then, we subdi- 
vide all patches in four, and repeat the process until some terminating condition is 
met. 

Our algorithm is a 4-stage one, and during the first three stages, Powell is called 
frequently for energy minimization. 

28 Final Technical Report 



First, we fit the caps to the data, and force the caps to be planar. This way, all 
tangent vectors in all directions at the pole are coplanar. When fitting, the cap can 
change its shape, subject to the planar constraint, in order to get the best fit. By du- 
plicating the control points at the poles and this planar constraint, we can get a 
smooth caps around the poles when we want to construct a smoother (e.g. C ) surface. 

Second, we perform the curve fitting to some meridians to locate the profile of 
the target, and this is done by applying energy minimization to these meridians. We 
select the odd(resp. even)-indexed meridians and fit them to the data by treating them 
as approximating linear B-snake [16]. The only difference between a B-snake and a 
selected meridian lies in the internal energy. When calculating the internal energy of 
these meridians, we not only consider their own smoothness but also the smoothness 
between them and their immediate neighboring even(resp. odd)-indexed meridians 
(an example is depicted in Figure 3.8 ). Then we let them adapt to find the profiles of 
the target. These selected meridians are not influenced much by the fitting surface (by 
the internal energy) when moving, so they can detect the object more accurately. 
Please notice that the external energy of these selected meridians is defined on the 
curve without considering the surface nearby. The surface is separated by the selected 
meridians into independent "strips" in a way, and each strip contains an even(resp. 
odd)-indexed meridian. Each strip is bounded by two odd(resp. even)-indexed merid- 
ians. 

Next, we fit each strip to the target. We select meridians of the other polarity, 
even(resp. odd)-indexed, to do the mesh fitting for each strip. We treat them as regu- 
lar snakes, except that they are tuned to minimize the external energy (error) of the 
strip. This means the external energy is not only from the curve but also from the area 
it defines. 

The fourth stage is subdivision (in Figure 3.3 ). If the fitting surface up to now is 

!3 55 S5 8S 
!5 ■■■■!! 
2* ■■ ■■ •; 
5S ■■■■!! j* ■■ ■■ ■» 

Figure 3.3 Subdivision (except on the caps). 

not satisfactory, we subdivide all rectangular patches into four and then go back to 
stage 1, otherwise, we exit. 

3.2.3 Initial guess 

What we want to obtain is the outer contour of the target at each stage. The con- 
cavities of the objects can be detected later by applying Boolean operations applied at 
the next stage. We just need to have the initial surface (or curve) covering all data 
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points. So, the initial fitting surface would be slightly larger than the target, and it 
shrinks when the energy is being minimized. 

First, we compute the center of mass of the data points, and extract the farthest 
data point in each sampled direction. The polygon formed by these extremal data 
points is used as the initial guess. An illustrative example is in shown Figure 3.4 . 

In the 3D case, we have two alternatives. The first one is to use a cylinder cov- 
ering all data points as the initial surface. In the second approach, we first calculate 
the center of mass C, too. In order to make the system invariant under translation and 
scaling, we compute the three eigen vectors of the covariance matrix of the data 
points, and then use these orthogonal vectors to define another coordinate system 
with the origin at C. We define the sampled directions according to this coordinate 
system, and find the farthest data point in each sampled direction. With these far- 
thest points, we can obtain a fairly good initial estimate on the data points. In both 
approaches, the caps of the initial surface must be initialized to be planar. Examples 
for these two approaches are in Figure 3.5 and Figure 3.6 , respectively. 

In both 2D and 3D cases, if there is no data point in the sampled direction, we 
set the corresponding radius to a predefined constant for the initial estimate of the 
curve and surface. 

• •   • 

•   •    '  •   . 0 .       •   . 
• '. • •      ,© \i ©x<3) 

(a) Data points    (b) Center of mass and the     (c)Initial snake 

sampled farthest data points        (a Polygon) 

Figure 3.4 Initial guess 

3.2.4 Parameters 

There are only two important parameters, ERRORthreshold and RATIOgxt.to.int, 
set by the user in this algorithm. 

ERRORtnreghoia is used to determine whether or not a patch of the surface or a 
span of the snake is good. We only process the bad parts of the snakes and the bad 
patches on the fitting surface during each iteration. At each iteration, a patch (or a 
span) is good if its average external energy is smaller than ERROR^n-eg^y; other- 
wise, it is bad. 

RATIOext.to.int specifies the relative importance of the external energy with re- 
spect to the internal energy. After setting RATIOext-t0-int' two internal parameters 
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Wext and Wint, concerning the weights of the external and internal energies, are set 
by the system. Wext is always 1, and Wint is set as below: 

TT, current - ext 
W 

int     E ,    . .xRATIO    .   ,     .   . current - mt ext-to-int 
Where Ecurrent.ext is the current exter- 

nal energy of the fitting surface or snake, 
and Ecurrent.int is the current internal ener- 
gy of the fitting surface or snake 

Every time Powell is invoked, Wint is re-calculated based on RATIOext.to.jnt and 
the current internal and external energies of the fitting surface. So every time, Powell 
may be called with different W^t- 

The reasons why we set RATIOext.to.int is that Wext and Wint are different mea- 
sures and thus on different scales. RATIOext-t0-int serves to normalize two energies. 
RATIOext.to-intis always greater than 1; otherwise, the fitting surface is unlikely to 
conform to the data points, as we now explain. 

As we subdivide the surface after each iteration, the fitting surface is approach- 
ing the real object. We have more confidence in the fitting surface. So it is suggested 
that the internal energy weight be reduced as the process goes on. One more advan- 
tage of RATIOext-to-intis tnat the weight of the internal energy tends to decrease as 
the process goes on, because Eext decreases faster than E^t does when RATIOext.tQ.int 
is greater than 1. By setting RATIOext-to-intto be a constant greater than 1, we can 
diminish the importance of the internal energy after each iteration implicitly, and 
thus obtain a better fitting surface. 

On the contrary, if we set Wint directly and keep it unchanged, then the internal 
energy tends to dominate at the later iterations because the external energy decreas- 
es faster than the internal energy does. This might not lead to a good fit. 

These two parameters could be constants in most cases, which means we can use 
the same values for most data regardless of the complexity of the underlying object 
(because the weight of the internal energy decreases automatically as the fitting pro- 
cess goes on). Thus, we can assume the underlying object is smooth, and assign a lib- 
eral weight to the internal energy. We use the same parameter values in our 
experiments. 

3.2.5 Summary 

In summary, in the first step, we fit the caps. Next, the odd(resp. even)-indexed 
meridians are used to find the profile or frame of the target, and the surface is divided 
into strips by these meridians. Then the even(resp. odd)-indexed meridians are ap- 
plied to fit the strips to the data. Finally in stage four, we subdivide the surface, that 
is, we divide each rectangular patch at its center into four (we can avoid degenerate 
patches this way). We break the 3D surface problem into a set of 2D (linear) B-snake 
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problems in a way. Also notice that, at each step, although we have different ways of 
calculating the internal energy E^nt, and the external energy E'   t, the basic idea is 
the same. 

We can see that this is a typical coarse-to-fine approach. We start with few con- 
trol points and large patches, then we increase the number of the patches and control 
points at later iterations. 

Our algorithm overcomes the time and space complexities, and closed surface 
problems by (1) breaking the 3D surface problems into several 2D snake problems, 
which is shown in stages 2 and 3, (2) coarse-to-fme approach, and (3) forcing the cap 
to be planar. Due to the robustness of Powell, we do not need a good initial guess. Also, 
the Powell method guarantees convergence. 

Please notice that stages 2 and 3 can be performed very fast when there are few 
control points. We can take advantage of this to get more reliable global information. 
The computational time could also be largely reduced by parallel processing. It is ob- 
vious that (1) the two caps are independent of each other, (2) all odd(resp. even)-in- 
dexed meridians are independent of one another, and (3) all even(resp. odd)-indexed 
meridians are independent of one another, so each stage can be performed in parallel. 

3.2.6 Experiments 

ERROR^gghoid and RATIOext_to_int are 1.0 and 10 in all of our experiments. The 
first experiment on the head is performed on Sparc 10, and the second on IRIS Indigo. 

Figure 3.5 shows the evolution of the fitting surface with the cylindrical initial 
surface, and both the shaded and wire-frame results are shown. The average external 
energy of the surface point is initially 20.15 voxels, 1.43 voxels after the first iteration, 
1.21 voxels after the second iteration (one sub-division has been done), and 1.18 vox- 
els after the third iteration (two sub-divisions have been done). 

An experiment on the Renault part (see Figure 3.6 ). Around 3820 control points 
are used. The maximum point error of the fitting surface is 2.0, and the average is 
0.37 voxel. The running time here includes the time for constructing the energy field, 
so it is longer than those for the other experiments. There are three iterations (two 
subdivision). A 200x200x200 cube is used to store the external energy. The average 
error is 10.54 voxels initially, 1.04 voxels after the first iteration, 0.41 voxel after the 
second iteration, and 0.37 voxel finally. The distribution of the error is also shown, (a) 
shows the original data, (b) is the shaded result, (c) is the initial surface, (d), (e), and 
(f) are the results after each iterations, (g), (h), (i), and (j) show the patches with an 
error above 0.3, 0.6, 0.9, and 1.2, respectively. There are only three patches with an 
error over 1.2 (and less 2.0). The detailed information is on Tables 1 and 2. 
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(a) Initial surface. (b) Result 1 (c) Result 2        (d) Result 3 

(e) Initial wire      (f) Wireframe 1    (g) Wireframe 2       (h) Wireframe 3 
Figure 3.5 The evolution of the experiment of head 1. (a) is the initial 
surface (cylinder), (b), (c), and (d) are the deformed results for each 
iteration. The surface has been sub-divided twice, (e), (f), (g), and (h) show 
the wire frames of (a), (b), (c), and (d). 

3.3 Part 2: Surface fitting for complex objects 

3.3.1 Issues 

Most deformable algorithms are deficient when (1) there are multiple underly- 
ing objects, (2) there are deep cavities, or (3) the underlying objects are more compli- 
cated than Genus 0. These are the problems we want to resolve here. 

Table 1: Performance on the Renault part experiment 

Initial 
surface 

first 
iteration 

second 
iteration 

third 
iteration 

Error 10.54 1.04 0.41 0.37 

Control points 16x18 16x18 32x33 64x63 

Computation time (min.) 0.1 21 19 3 

Table 2: General information on the Renault part experiment 

Number of data points Time for constructing energy field No of subdivisions 

214100 2.16 minutes 2 

Final Technical Report 33 



(a) Original data (b) Shaded result 

(c) Initial surface 

(e) Second fit 

(g) Patches with 
an error > 0.3 

a** 

\B -V 

(d) First fit 

(f) Third fit 

(h) Patches with 
an error > 0.6 

^j 

(i) Patches with 

an error > 0.9 

(j) Patches with 
an error > 1.2 

Figure 3.6 Experiment on a Renault part. 
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3.3.2 Algorithm 

Our proposed approach is to use a hierarchy. We would like to handle a compli- 
cated object by representing it as a tree. The underlying object can be obtained by ap- 
plying Boolean operations recursively to the tree. Every node in the tree, including 
the root, is supposed to be a simple object without narrow cavities or inner tunnels, 
that is, each node contains the outer contour of some object. We still use the energy 
fields mentioned in the previous section to detect the outer contour. 

Let B be the outer contour first found. Then, we isolate residual data points that 
are not well fitted, and cluster these residual data points into groups. Next, we find 
those bad parts of the fitting curve with high external energy. For each bad part, we 
check if there is a group of residual data points connected with it. If so, we merge it 
into this group, otherwise we consider this bad part good because no data points are 
nearby. Now, we have groups of points. We treat each group of bad data points as an 
object and find out its contour recursively. Let P be one of the contours. 

If P is inside B, which means P is a negative part of 5, then B= B\P; 

If P is outside B, which means P is a missing part of B, then B=BuP 

How do we check if sub-part P is inside or outside body B? Because the boundary 
of any object here is a closed continuous B-spline curve, we can separate the inside 
from the outside by setting different gray levels inside these two regions. Through the 
gray level values, we can tell whether a pixel is in B or not. Thus we can determine if 
P is inside or outside B easily. 

An illustrative 2D example is given in Figure 3.7 . (a) shows a complex object 
Object 

Pl     Pi    P,  P4 

¥ ! 

Pi    P?    ?3 P4 

Lk A 
(a) Original object (b) Result of (a) (c) Tree of(b) 

P    Object! Object2 

(d) Original data composed (e) We can detect two objects after applying 
of two objects. the difference Boolean operation. 

Figure 3.7 Two illustrative examples of object 
decomposition. 

with deep cavities. In (b), by finding the outer profile only, and using the residual data 
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points and the bad curve segments, we get simple-shaped primitives B, Plf P2, P3, P4, 
P5, and Pß. The original object can be restored by applying the appropriate union and 
difference Boolean operations, (c) shows the tree associated with the result in (b). (d) 
shows two objects close to each other. By applying the difference operation, we can 
classify this set of data points into two different objects as shown in (e). 

3.3.3 Experiments 

In the first experiment (in Figure 3.8 ), we use hand-made data, which consists 

(a) Original hand-made data 

«P 
(b) Fitting result after applying 

a sequence   of Boolean operations. 

Fining results of these Bad fitting segments Data Points not 

two clusters accounted for 
(c) Two clusters of the bad segments and bad data 

points are found after the first fit 

Result= 

(d) Order of the Boolean operations applied 

Figure 3.8 Segmentation on two concave patterns. 

of two simple objects with deep concavities. After applying a B-snake and appropriate 
Boolean operations, these two objects are differentiated, (a) is the original data, and 
(b) is the final result, (c) shows the initial guess, and how the residual data points and 
the bad B-snake segments merge into two clusters (which form the negative parts of 
the target), (d) shows the Boolean operations applied. At first, the outer contour is 
found. We find two clusters of residual data points inside the outer contour, so the dif- 

36 Final Technical Report 



ference Boolean operations are applied. Finally, the original contour is separated into 
two 

In the second experiment (in Figure 3.9 ), the data points are the same as those 

(a) Data corrupted by noise (b) Fitting result 

Figure 3.9 Experiments on noisy data. 

in Figure 3.8 except that (1) half of the data points are deleted randomly, and (2) the 
data points are randomly shifted at most 3 pixels, (a) shows the data points, which 
have broken boundaries, (b) is the result. The sequences of the Boolean operations ap- 
plied are exactly the same as those in the previous experiments. The boundaries de- 
tected here are more irregular, but they are still continuous B-spline curves. So the 
objects and the hole can still be correctly segmented. 

The third experiment, in Figure 4.10 , is on 3D data which is composed of two 
separate genus 1 toruses. (a) shows the data points, (b) is the result (object A) after 
the first fit, which results in a dumbbell-like shape, (c) is the residual of the data 
points that are not accounted for by object A. They are from the inner parts of the two 
toruses, and (d) shows the bad parts of object A without data points nearby. They are 
from the two ends and middle of object A. (e) is the merger of points in (c) and (d). (f) 
is the fitting result (object B) to points in (e). Because object B is inside object A, a dif- 
ference operation A\B is applied, which leads to two separate entities, (g) shows the 
shells of the two separate entities, which are toruses. In this experiment, objects (two 
separate toruses) more complex than genus 0 are well handled, and the data segmen- 
tation, which segments the data points into two parts, is automatically done after fit- 
ting. 

3.4 Discussion 
There are several important aspects in this paper: 

• Our new scheme is a coarse-to-fine approach. It divides all patches after each 
iteration. It is efficient because if a patch is really good, then the only operation 
applied to it in the future is just sub-division, which costs very little. This 
scheme also preserve the rectangular structure of the surface after each sub-di- 
vision, which makes generating smooth surface easier and cheaper. This ap- 
proach is free from the degenerate patch problem because a rectangular patch is 
always divided into 4 rectangular ones. We prefer the rectangular mesh to the 
triangular mesh because it is much easier to construct a smoother surface from 
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(fc) Object A after the first fit 
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fcj Residual of data points. 

f^j Bad parts of the fitting surface. 
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if) Object B after fitting points in (e). 

(g) Result of the boolean operation A\B. 

Figure 4.10 Experiment on two tori 
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the rectangular mesh, and the properties, such as derivatives, are much easier 
to obtain. 

• There is always a large matrix associated with the minimization algorithm, 
and the size of the matrix is proportional to the square of the number of the vari- 
ables. This might result in the memory explosion if there are many control 
points to handle at a time. Also, the numerical method goes extremely slow un- 
der this situation. With the partitioning scheme, we break a 3 dimensional prob- 
lem down into several 2 dimensional problems, and then the space and time 
complexities can be reduced significantly. We separate the surface into several 
strips, so Powell is always called with a limited number of variables. For exam- 
ple, if the fitting surface has MxN control points, the maximum number of vari- 
ables sent to Powell is around 3*(N-4). Only the bad parts of the strips and the 
meridians are tuned by Powell. So, in practice, the number of variables is far be- 
low 3*(N-4). The caps only have (N+5) variables, which is also low. 

• We reduce the weight of the internal energy implicitly as the iteration goes on, 
because we have more confidence in the fitting surface after each iteration. This 
way, the discontinuities of the data can be well preserved. 

• We use the Powell minimization routine which is more stable, robust, and ac- 
curate than the gradient descent approach. 

• Due to the independency among the caps and meridians, our algorithm could 
run in parallel. 

• This system is easy to control because there are only two global parameters to 
adjust. 

• The assumptions of (1) one underlying object only, (2) the availability of good 
initial guess, and (3) geometrically simple objects without deep cavities have 
been the weakness points of the deformable model algorithms. By applying mul- 
tiple snakes simultaneously and Boolean operations, objects can be segmented 
into independent ones, and cavities can also be well handled. Our algorithm 
makes the deformable model much more versatile. 

3.5 Future work 
We would like to upgrade all algorithms in this paper completely to 3D ones, and 

build a working system for both 2D and 3D. In addition, we would like to work out a 
better 3D surface representation which can handle multiple objects and objects more 
complicated than Genus 0. 
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4 Surface Approximation of a Cloud 
of 3D Points 

Chia-Wei Liao and Gerard Medioni 
We present an implementation of deformable models to approximate a 3-D sur- 

face given by a cloud of 3D points. It is an extension of our previous work on "B- 
snakes" [44] and [42], which approximates curves and surfaces using B-splines. The 
user (or the system itself) provides an initial simple surface, such as a closed cylinder, 
which is subject to internal forces (describing implicit continuity properties such as 
smoothness) and external forces which attract it toward the data points. The problem 
is cast in terms of energy minimization. We solve this non-convex optimization prob- 
lem by using the well known Powell algorithm which guarantees convergence and 
does not require gradient information. The variables are the positions of the control 
points. The number of control points processed by Powell at one time is controlled. 
This methodology leads to a reasonable complexity, robustness, and good numerical 
stability. We keep the time and space complexities in check through a coarse to fine 
approach and a partitioning scheme. We handle closed surfaces by decomposing an 
object into two caps and an open cylinder, smoothly connected. The process is con- 
trolled by two parameters only, which are constant for all our experiments. We show 
results on real range images to illustrate the applicability of our approach. The ad- 
vantages of this approach are that it provides a compact representation of the approx- 
imated data, and lends itself to applications such as non-rigid motion tracking and 
object recognition. Currently, our algorithm gives only a C continuous analytical de- 
scription of the data, but because the output of our algorithm is in rectangular mesh 
format, a C1 or C2 surface can be constructed easily by existing algorithms. 

4.1  Introduction 
Range sensing is a mature technology, and there are many methods, such as 

time of flight and MRI, collect 3D data based on this technology. In addition to this, 
3D data can also be obtained in passive ways like stereo and shape from X methods. 
The data obtained from the above sources is in the form of points. 

But, in computer vision, what we need are some properties such as the curva- 
ture, normal, and principal directions. These quantities relate to the underlying sur- 
face, which is not made explicit in the original data. Furthermore, it is even more 
difficult if some ordering relation among the data points is not known. This happens 
mainly when we gather data points from various sources. Analytical surface construc- 
tion of a cloud of points (boundary points of the object) becomes important because it 
is much easier to extract the features from an analytical surfaces. So, we need some 
tools to construct an analytical description (for example, surface) for the collected 3D 
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data. A deformable model, which can give a analytical surface representation over a 
cloud of 3D data points, is a good candidate for this purpose. 

The idea of fitting data by a deformable model can be found in the work of Kass 
et al. [41] in 2D. Such models are generalized in 3D by the same authors [57] for a sur- 
face of revolution. 

Recently, Cohen et al. [34] have expressed the surface fitting problem as a 
functional minimization problem. They enhance performance and numerical sta- 
bility using variational approach and Finite Element Method. Terzopoulos and 
Metaxas[55] present a physically based approach to fitting complex 3-D shapes us- 
ing a class of dynamic models which can deform locally and globally, and satisfy the 
conflicting requirements of shape reconstruction and shape recognition. Based on 
the elastic properties of real materials, Pentland and Sclaroff [47] propose a closed- 
form, physically based solution for recovering a 3-D solid model from collections of 
3D surface measurements. A closed-form solution can be obtained in their system 
using Modal Dynamics. Nastar and Ayache's approach [46] is similar to Pentland's, 
but they delete a nonlinear term in the physics governing equation, and then the 
computation is simplified. This way they can speed up the fitting process. Ter- 
zopoulos and Vasilescu [56], motivated by concepts from numerical grid generation, 
use adaptive meshes that could sample and reconstruct intensity and range data. 
In their recent work [58], they develop some algorithms to handle the discontinuity 
problem, and by subdividing the adaptive meshes, reasonable results can be ob- 
tained. Delingette et al.[35] model an object as a closed surface that is deformed 
subject to attractive fields generated by input data points and features. Features 
affect the global shape of the surface while data points control local shape. Sinha 
and Schunck [51,52] use weighted bicubic splines, which are able to interpolate 
data with discontinuity without much distortion, as a surface descriptor. A regu- 
larized least square fit with the addition of an adaptive mechanism in the smooth- 
ness functional is applied in order to make the solution well behaved. Minimizing 
the energy by handling the fitting B-spline surface independently along parame- 
ters u and v and interpolating the external energy field, Gueziec [36] obtains good 
fitting results efficiently in terms of time and space complexities. Mclnerney and 
Terzopoulos [43] apply a dynamic balloon model and finite element method to re- 
construct a 3D object, their model can give the information to measure the differ- 
ential geometric properties of the fitted surface. Muraki [45] uses a "Blobby" model 
for the shape description. In his approach, an potential energy field is constructed 
through the "primitive," realized as an implicit function F(P)=T. By splitting one 
selected bad primitive into two at a time, and fitting them to the data, the shape of 
the object can be retrieved. Hoppe et al.[S8] propose an algorithm based on the es- 
timated tangent plane of each sampled data point, and then a Riemannian Graph 
is constructed using EMST (Euclidean Minimum Spanning Tree). The contour of 
the object can be derived from this graph. Solina's approach [53] is based on super- 
quadrics, and several functions concerning bending, tapering, and cavity deforma- 
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tion, are employed to adapt the superquadrics to the data points. Han et al.[37] 
introduce hyperquadrics, which is a generalization of superquadrics, for shape re- 
covery from range data. Their model can represent any arbitrary convex shapes. 
Huang and Goldgof [39] develop an algorithm similar to Vasilescu and Terzopoulos's. 
Their algorithm differs mainly in the way the meshes are subdivided. Instead of ad- 
justing the stiffness of the spring to fit the local properties of the data, they update 
the patch size adaptively by adding or deleting nodes appropriately. A new node is 
added between two neighboring nodes if they are far from each other, and two neigh- 
boring nodes are merged if they are very close to each other. 

To summarize, most of the algorithms described above either require many pa- 
rameters, or cannot guarantee convergence (partially due to the use of gradient de- 
scent to minimize the energy). Our proposed algorithm can deal with these problems 
appropriately. In our approach, we apply a tested numerical method which guaran- 
tees convergence, and through an coarse-to-fine approach and a partitioning scheme, 
the computational time is kept in check. 

4.2 Description of our approach 
Most of the algorithms described earlier are suffering from long computation 

time and large space complexity. Furthermore, sometimes due to the instability of the 
numerical methods, such as gradient descent, the result might be bad because of over- 
shooting. It is not easy to detect over-shooting, let alone to backtrack and tune the 
stepsize. Most algorithms attacking this problem are based on gradient descent. Here 
we adopt Powell, a much more accurate and stable method. Through some mecha- 
nisms in our algorithm, the computation time is kept in check. The formalism we are 
about to establish amounts to deforming the initial surface to conform as closely as 
possible to the given 3D data points. This is achieved by defining an attraction force 
field around these data points to bring the initial surface closer to them. The initial 
surface is updated by a function minimization algorithm, Powell. Currently, the sur- 
face consists of C° rectangular mesh. In a word, we treat the whole process as mini- 
mization problem - given an initial guess, which may be a cylinder, we find the local 
minimum of the energy function by tuning the variables (the positions of the control 
points). 

The total energy of the fitting surface is defined as below: 

Etotal = Wint*Eint + Wext*Eext 

Eext expresses the distance between the fitting surface and the data points. E^nt 

depends on the constraints, such as smoothness. The definition of E^nt is subject to 
change when different constraints are applied. W^t and Wext are the corresponding 
weights. Without loss of generality, Wext is always 1 in our system. 

Once a C° surface is obtained, it is also possible to upgrade it to C1 using existing 
algorithms [50], although we do not address this point here. Due to the convex-hull 
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property of B-spline function, we can also use these C° control points to construct a 
C1 or C B-spline surface without significant error when there is a large number of 
control points and these control points are close to one another. 

4.2.1 Global parameters 

In our system there are only two global parameters set at the beginning, which 
makes the whole system easy to control. 

The first is ERRORforeshoid' which is used to determine the goodness of the patch 
on the mesh. The second is RATIOext_to_int, which is used to set the initial respective 
contributions of the internal and external energies. These two global parameters will 
be explained in details in the following section. It is worth noting that all our data sets 
were processed with the same parameter values. 

4.2.2 Surface Representation 

First, how do we represent a surface? The most common primitives are triangu- 
lar and rectangular meshes. The triangular mesh is more general, but suffer from the 
following drawbacks: 

a) Eventually, we would like to construct a smooth surface, but it takes high de- 
gree polynomials to construct a C1 or C2 surface from the triangular mesh, which is 
expensive. In most cases, the algorithms for this purpose require the gradient infor- 
mation of each point, which does not come with the triangulation, and needs to be es- 
timated. The rectangular mesh can be upgraded it to C1 or C2 easily through B-spline 
or Bezier functions. 

b) For energy minimization, we need a method to estimate the smoothness of the 
surface. It is not easy to estimate the smoothness of the triangular mesh, compared 
to the rectangular mesh, whose derivative information can be evaluated with simple 
mathematics. In a way, each patch on the triangular mesh is parameterized by differ- 
ent parameters, which makes the estimation of the smoothness difficult. 

In our algorithm, we need to sub-divide some patches on the mesh after each it- 
eration. Sub-dividing the patches might lead to degenerate patches, which are points 
or lines. This might cause serious numerical problems later. We avoid this by always 
dividing the patch into four sub-patches at the center point. 

The rectangular mesh, of course, presents problems of their own: it is harder to 
construct a closed smooth surface from the rectangular mesh because of the poles. But 
we can get around this problem, and then upgrade the closed rectangular mesh to C1 

closed surface. 

Here, we currently use a Linear B-spline surface for its efficiency in computation 
time and some geometric properties we need. For a Linear B-spline surface, each con- 
trol point only affects its four neighboring patches. This makes it very easy to sepa- 
rate the whole surface into independent strips. 
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4.2.3 The Powell minimization procedure 

What we are performing now is simply the minimization of energy ^oto; by ad- 
justing the points on the mesh. Gradient descent is not very reliable. For our applica- 
tion, an eligible numerical method should meet the following requirements: 

1) It should be able to handle discontinuous functions, 

2) it should work when the derivative information is unavailable, 

3) it should be reliable and accurate, 

4) the time complexity should be reasonable, and 

5) convergence should be guaranteed. 

Powell is a good candidate, though might be slower than gradient descent. But, 
in our application, it is not really the case because (1) we are using a coarse-to-fine 
approach and only the bad patches are handled at each iterations and (2) the weight 
Wint of smoothness constraint is changing implicitly as the process goes on. So, the 
gradient descent procedure, if applied, has to inverse a completely different matrix 
every time it is invoked even if the number of variable is the same (due to different 
Wint). It is impractical to pre-compute all inverse matrices ahead of time because 
there are infinite number of possible matrices. In contrast, Powell does not have to 
invert a matrix. Inverting a huge matrix, which might happen fairly often in our ap- 
plication, is time consuming. So, here the whole process should not be slowed down 
much by Powell. 

The Powell algorithm is itself a direction set method for function minimization. 
Assume the function to be minimized has N variables. With an initial guess, which is 
an N-tuple vector, Powell can work by producing spontaneously mutually conjugate 
(non-interfering) directions, and searching along these directions sequentially for the 
(local) minimum. Because of the power of Powell, we can define almost any kind of en- 
ergy we need. If we have any a priori about our target, we can define it in terms of the 
energy and apply it to Powell. For instance, if the approximate area AREA of the ob- 
ject is known, we can define an energy, Earea = I AREA - AREAßtting surface I, using this 
information. According to our experiments, Powell is efficient, compared to the regu- 
lar gradient descent approach, on the aspect of the number of control points needed 
to fit the data points. For more information, we refer the reader to [49,33,31,40,48,54]. 

If too many control points need to be handled simultaneously, Powell can become 
very slow. In our algorithm, this issue is addressed by a partitioning scheme, ex- 
plained later, and thus Powell is always called with a limited number of variables, and 
we can get reasonable results in our experiments in a few minutes for simple objects. 

4.2.4 Coarse-to-fine approach 

Our approach is iterative, and we start this fitting process with a small number 
of control points (patches). At each iteration, we categorize the patches into two class- 
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es, good and bad, based on their associated external energy (error fit). Only the control 
points belonging to the bad patches are adjusted to minimize the energy (error) of the 
fitting surface, and then all patches are subdivided into four sub-patches after the fit- 
ting process. In our current implementation, the user specify the number of the iter- 
ations. So, the process terminates after we have iterated a certain number of times. 
The numbers of the control points and patches increase as the iteration goes on. Pres- 
ently, we iterate at most three times, which means that we only go through at most 
two subdivisions. The coarse-to-fine approach helps improve the performance in time 
very much. The global information can be acquired in the first 2 iterations, and the 
following iteration is used to highlight the surface details. 

4.2.5 External energy Eext 

The external energy is a potential energy which attracts the fitting surface to- 
ward the data points. The result of the energy minimization highly depends on the 
external energy field. In our implementation, we define the external energy of a point 
on the fitting surface to be the distance to the nearest data point. The fitting surface 
can approach the data points when the external energy of the fitting surface is being 
minimized. 

The external energy, which derives from the data points, can decide the success 
of the fitting process. A good definition of the external energy should has reasonable 
time and space complexities when the external energy of the fitting surface is being 
calculated. One possible solution to this is to define the external energy also from the 
data point's viewpoint. In addition to the energy field, we might define one more ex- 
ternal energy based on the distance between each data point and the fitting curve. 
This might bring about another serious problem. How do we determine the corre- 
sponding point on the fitting curve for each data point? Usually, this information is 
not available. We might define the corresponding point to be the closest point on the 
fitting curve. But in reality the nearest points are not necessarily the corresponding 
points, and it is possible for one point on the fitting curve to correspond to more than 
one data point as shown in Figure 4.1 when the target is concave. In (a), the concave 
polygon, composed of solid lines, is the data points, and the dotted rectangle is the ini- 
tial fitting curve, (b) shows possible wrong attachments based on the closest point cri- 
terion. Data points belonging to different parts of the target might be attached to the 
same part of the fitting curve, and, in consequence, the fitting curve could not capture 
the profile of the target faithfully as shown in (c). One more problem with this ap- 
proach is that it is quite expensive, as we need to calculate the closest point for each 
data point every time the external energy is evaluated. 

Our proposed method is efficient in the time and space complexities. We use an 
energy field represented by a cube composed of voxels. Each voxel contains the dis- 
tance to nearest data point, and this distance is the energy of the voxel. The external 
energy of the fitting surface is calculated by sampling points on the surface and get- 
ting the energies of the voxels they fall in. This way, we can compute the external en- 
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(a) Data points and initial guess (b) Possible wrong attachments     (c) Possible result 
Figure 4.1 A possible mistake for the closest point approach 
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Figure 4.2 Problems with the long-distance external energy 

ergy at a low cost, and the space complexity, which is in proportion to the number of 
voxels in the cube, is reasonable. 

The problems with this definition of distance, as the ones commonly encountered 
with morphology operations, is that it rounds corners and cannot handle cavities. 
These two problems are illustrated in Figure 4.2 below. In (a), the resultant curve 
only gives a dimple instead of going deep into the cavity, (b) shows the distance field 
and the target curve, and the resultant fit, which rounds the corner. The numbers in 
this example indicate the external energy at each point, and the pixel with energy 
zero is the data point. Any algorithm based on the shortest distance to the data points 
cannot be immune to these problems. To palliate this, we define two external energy 
fields, a long-distance one and a short-distance one. The long-distance external ener- 
gy field is rather coarse, and measures the distance from each voxel to the nearest 
data point. Its main purpose is to quickly pull the fitting surface towards the data. 
The short-distance one is a more accurate measure. 

At the beginning, we use the long-distance external energy, and when the fitting 
surface is close to the fitted object as measured by the long-distance external energy, 
we switch to the short-distance external energy to improve the results. 

Long-distance external energy field: 
The long-distance field is computed by a 3D Blum Medial Axis Transform [32] in 

a digitized cube G{X,Y£) typically 150 x 150 x 150. This algorithm is straightforward: 
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(a) the long-distance external energy.       (b) the short-distance external energy. 

Figure 4.3 An example of the long-distance external energy field and its 
corresponding short-distance external energy field 

Every voxel is initialized to a very large number, except the data voxels which 
are zero. We then put a one in any voxel for which any of its neighbors contains a 0, 
and so on. 

Short-distance external energy field: 
Once the surface is close enough (the distance is smaller than H, typically 3), we 

redefine the energy field by averaging the values of the original field in an HxHxH 
neighborhood. Of course, we leave the 0 values (data) unchanged. This is equivalent 
to interpolating the original values. Figure 4.3 shows an example illustrating the dif- 
ference between the long-distance and the short-distance external energies. It should 
be clear to the reader that the corner in the short-distance energy field is more salient 
than in the long-distance energy field. 

Figure 4.4 shows an example of the effect of the short-distance external energy 
field. In this example, (a) is the initial data, which is a head, (b) is the fitting result 
applying the long-distance external energy field only, and (c) is the fitting result ap- 
plying both the long-distance and the short-distance external energy field, (d), (e), and 
(f) are cross-sections of (a), (b), and (c), respectively. We can clearly see that we obtain 
a better fit if the short-distance external energy is applied. The use of short-distance 
external energy can also bring down the computational time to some degree. 

We could combine these two external energies into one. The problem is that we 
use one byte to store the external energy of each voxel in our implementation, and the 
span of the energy value of the voxel for short-distance external energy field is much 
smaller, so we can get better quantization (resolution) for the short-distance external 
energy field, and thus obtain a better result. This is why we have two separate exter- 
nal energy fields here. We switch to the short-distance external energy field after the 
first iteration in our implementation. 

In summary, the long-distance external energy field is coarse and brings the sur- 
face close to the data, and the refining work is left to the short-term external energy 
field. 
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(b) (c) 

(d) (e) <f> 

Figure 4.4 An example of the effect of the short-distance external energy 

4.2.6 Internal energy Ej^ 

The internal energy should be computed as a measure of the curvatures on the 
surface. Here instead, we measure it as the sum of the digital curvatures on some 
curves drawn on the surface. The choice of these curves will be explained later. 

For a B-spline surface, parameterized by u and v, with MxN control points, we 
can construct M (resp. N) snakes, each of which contains N (resp. M) control points, 
directly from the control points along the u (resp. v) direction. We use the second de- 
rivative of these snake to represent the internal energy. Due to the high similarity be- 
tween the shapes of the control points and the fitting surface, we can just directly use 
the control points to estimate the internal energy. The way we estimate the internal 
energy brings down the computational time since the internal energy is calculated 
very frequently. Suppose we have a curve composed of points Pj, 0^i<N, the internal 
energy is defined as below: 

iV-l 

int ~    2^ I 
i = 1 

i+p
i+i 2jy» 

The reason why we define the internal energy in such a simple way, which has 
no arc length as the denominator, is that the length of the snake (curve) cannot 
change much when the fitting surface is close to the fitted object. We always place 
much more weight on the external energy than internal energy, so we don't expect the 
snake length to be influenced much by the internal energy. This formulation favors 
coplanar and equidistant point arrangements. 
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4.2.7 Choice of the initial surface 

Now we move on to how the initial surface is set up. Currently, we have two 
methods for setting up the initial surface. 

The first is to build a cylinder that covers all the data points as the initial sur- 
face. The second is based on a spherical coordinate representation. We compute the 
center of mass of the data first as the center of the initial sphere, then sample data 
points in NQXN<J> directions, and find out the farthest data point in each direction. The 
radius in each direction is the distance between the center of mass and the corre- 
sponding farthest data point. We use this deformed sphere as an initial guess. If we 
do not find a data point in a given direction, we use the average of the radii in the 
neighboring sampled directions as the one in this direction.The caps of these two ini- 
tial surfaces are constrained to be planar. 

We always start with the second approach, which can give a better approxima- 
tion of the data. If we are unable to compute the radius in many (more than 18 for 
12x17 sampled directions) directions, we abort this choice and revert to the cylindri- 
cal initial guess. 

4.3  Overview of our algorithm 

4.3.1 Issues 

Several problems come with the algorithms dealing with deformable model: 

1) Huge computational time and space: Assuming MxN control points on the fit- 
ting surface, there are 3MN variables for this surface. Theoretically, we can 
just inject these 3MN variables into a minimization algorithm to minimize the 
energy of the fitting surface. This approach turns out to be impractical due to 
the unbearable computational time when 3MN is large. Furthermore, most 
minimization algorithms need a matrix of size (3MN)X(3MN), which results in 
huge space complexity also. An adaptive approach can just alleviate these 
problems, but cannot avoid these problems in the worst case, especially when 
all control points or patches are bad. 

2) Constructing a smooth closed surface from the B-spline control points: This is 
no problem if the surface is constructed from the triangular mesh, but we 
choose rectangular mesh, and we have already given the reasons in the previ- 
ous section. The problem is that the poles are not smooth if we try to construct 
the closed smooth surface, which is topologically equivalent to a sphere, direct- 
ly from the control points. It is because these two poles are shared by many de- 
generate patches (triangular patches) around them. 

3) A good approximation of the data as the initial surface: The quality of the fit- 
ting result depends on the initial surface, and we would like the result to be in- 
variant to the initial surface as long as the initial surface is not too bad. 
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Figure 4.5 The initial closed surface and the definitions of Pole, 
Meridian, and Cap 

4) The convergence of the surface to the data points: The convergence of the fitting 
process should be guaranteed. 

Now, we define some terms for further use. We define a Cap to be the triangular 
patches formed by a Pole and its adjacent control points. So, we always have two 
Caps. A Meridian (a line of constant u in parameter space) is defined to be the line 
connecting the two Poles, as depicted in Figure 4.5 . 

4.3.2 The algorithm 

A flowchart of our algorithm is in Figure 4.6 . 

Both the cylindrical and spherical initial surfaces we adopt are topologically 
equivalent to a sphere. In our algorithm, we consider a sphere as composed of three 
parts, which are two caps and an open cylinder as shown in Figure 4.5 . These three 
parts are processed separately in our algorithm. 

Instead of injecting all MxN control points into the minimization procedure 
(which is possible but extremely expensive), we decompose the problem into a curve 
fitting problem followed by a (simpler) mesh fitting problem. 

Given that the caps are already in place, we select every other meridian and 
move their (M-4) control points, which are not shared with the two caps, to minimize 
their energy. We then select the remaining meridians and move their (M-4) control 
points, which are not shared with the two caps, to minimize the energy of the related 
patches this time. It is important to note, however, that only the bad segments (patch- 
es or curves) are injected into the minimization procedure (after the energy minimi- 
zation, we can guarantee that the associated energy of the bad segments is reduced, 
but some segments with higher external energy might still be bad). Then, we subdi- 
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first two iterations. 
It loops until no 
more improvement. 

Figure 4.6 The flowchart of our algorithm 

vide all patches in four, and repeat the process until some terminating condition is 
met. 

Our algorithm is a 4-stage one, and during the first three stages, Powell is called 
frequently for energy minimization. 

First, we fit the caps to the data, and force the caps to be planar. This way, all 
tangent vectors in all directions at the pole are coplanar. When fitting, the cap can 
change its shape, subject to the planar constraint, in order to get the best fit. Thanks 
to this planar constraint, the constructed surface is smooth even at the poles. 

Second, we perform the curve fitting to some meridians to locate the profile of 
the target, and this is done by applying energy minimization to these meridians. We 
select the odd (resp. even)-indexed meridians and fit them to the data by treating 
them as approximating linear B-snake[44]. The only difference between a B-snake 
and a selected meridian lies in the internal energy. When calculating the internal en- 
ergy of these meridians, we not only consider their own smoothness but also the 
smoothness between them and their immediate neighboring even (resp. odd)-indexed 
meridians (an example is depicted in Figure 4.8 ). Then we let them adapt to find the 
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profiles of the target. These selected meridians are not influenced much by the fitting 
surface (by the internal energy) when moving, so they can detect the object more ac- 
curately. Please notice that the external energy of these selected meridians is defined 
on the curve without considering the surface nearby. The surface is separated by the 
selected meridians into independent "strips" in a way, and each strip contains an even 
(resp. odd)-indexed meridian. Each strip is bounded by two odd (resp. even)-indexed 
meridians. 

Next, we fit each strip to the target. We select meridians of the other polarity, 
even (resp. odd)-indexed, to do the mesh fitting for each strip. We treat them as regu- 
lar snakes, except that they are tuned to minimize the external energy (error) of the 
strip. This means the external energy is not only from the curve but also from the area 
it defines. 

The fourth stage is subdivision. If the fitting surface up to now is not satisfactory, 
we subdivide all rectangular patches into four and then go to stage 1; otherwise, exit. 

4.3.3 Summary and discussion 

In summary, in the first step, we fit the caps. Next, the odd (resp. even)-indexed 
meridians are used to find the profile or frame of the target, and the surface is divided 
into strips by these meridians. Then the even (resp. odd)-indexed meridians are ap- 
plied to fit the strips to the data. Finally in stage four, we subdivide the surface, that 
is, we divide each rectangular patch into four. We break the 3D surface problem into 
a set of 2D (linear) B-snake problems in a way. Also notice that, at each step, although 
we have different ways of calculating the internal energy Eint, and the external en- 
ergy Egxi, the basic idea is the same. 

We can see that this is a typical coarse-to-fine approach. We start with few con- 
trol points and large patches, then we increase the number of the patches and control 
points in later iterations. 

Our algorithm overcomes the time and space complexities, and closed surface 
problems by (1) breaking the 3D surface problems into several 2D snake problems, 
which is shown in stages 2 and 3, (2) coarse-to-fine approach, and (3) forcing the cap 
to be planar, which is explained to stage 1. Due to the robustness of Powell, we do not 
need a good initial guess, and two examples are shown in Figure 4.17 
andFigure 4.18 . Also, the Powell method guarantees convergence. 

Please notice that stages 2 and 3 can be performed very fast when there are few 
control points. We can take advantage of this to get more reliable global information. 
We repeat these 2 stages until there is no further improvement in the first 2 iterations 
(in the first 2 iterations, there are not many control points in the meridians or caps). 
It is almost impossible to rectify the error from the first 2 iterations, which is consid- 
ered global, by later iterations. So, in our implementation we add a inner loop to these 
two stages for the first two iterations. 
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The computational time could also be largely reduced by parallel processing. It 
is obvious that (1) the two caps are independent of each other, (2) all odd (resp. even)- 
indexed meridians are independent of one another, and (3) all even (resp. odd)-in- 
dexed meridians are independent of one another, so each stage can be performed in 
parallel. 

There are two important parameters, ERRORtnresnold and RATIOext.to-int> set by 
the user in this algorithm. 

ERROR^reshold *s used to determine whether or not a patch of the surface or a 
span of the snake is good. We only process the bad parts of the snakes and the bad 
patches on the fitting surface during each iteration. At each iteration, a patch (or a 
span) is good if its average external energy is smaller than ERROR^es}^; other- 
wise, it is bad. 

RATIOext_to_jnt specifies the relative importance of the external energy with re- 
spect to the internal energy. After setting RATIOext.t0-int' two internal parameters 
Wext and Wint, concerning the weights of the external and internal energies, are set 
by the system. Wext is always 1, and Wint is set as below: 

E 
TTT        _ current -ext 

^current - int X "^ ^ ^ext -to- int 

where   Ecurrent.ext is the current external energy of the fitting surface or snake, 
anda 

ECurrent-int is *ne current internal energy of the fitting surface or snake 

Every time Powell is invoked, W^t is re-calculated based on RATIOext.tQ.int and 
the current internal and external energies of the fitting surface. So every time, Powell 
may be called with different W^t- 

The reasons why we set RATIOext-to-int is that Wext and Wint are different 
measures and thus on different scales. RATIOext-to-int serves to normalize two ener- 
gies. RATIOext_to-intis always greater than 1; otherwise, the fitting surface is unlikely 
to conform to the data points, as we now explain. 

As we subdivide the surface after each iteration, the fitting surface is approach- 
ing the real object. We have more confidence in the fitting surface. So it is suggested 
that the internal energy weight be reduced as the process goes on. One more advan- 
tage of RATIOext.to.uit is that the weight of the internal energy tends to decrease as 
the process goes on, because Eexb decreases faster than E^t does when RATIOext-to-int 
is greater than 1. By setting RATIOext_t0.int t° be a constant greater than 1, we can 
diminish the importance of the internal energy after each iteration implicitly, and 
thus obtain a better fitting surface. 

56 Final Technical Report 



On the contrary, if we set Wint directly and keep it unchanged, then the internal 
energy tends to dominate at the later iterations because the external energy decreas- 
es faster than the internal energy does. This might not lead to a good fit. 

ERRORthreshold and RAT^ext-to-intare 1-° and 10 in a11 of our experiments. 

4.4 Details of our algorithm 
Now, we elaborate on the four stages concerning the cap, curve and mesh fit- 

tings, and subdivision. 

Stage 1. Cap fitting 

By treating the pole as 2 or more control points, we can achieve C° continuity at 
the poles on the caps when constructing the fitting surface. For example, for quadratic 
B-spline surface, we can achieve C° simply by duplicating the control points at the two 
poles. The caps of the surface present problems when we try to upgrade the surface 
from C° to C1, because the poles will not be C1 and are singular. This is an inherent 
limitation of the rectangular mesh no matter what surface construction algorithms 
(for example, B-spline and Bezier) are employed. But if the control points are copla- 
nar, then the tangent vectors at the poles along all directions will be coplanar. Based 
on this, we constrain all the points, including the pole and its adjacent control points 
to be coplanar. This way the surface constructed can be smooth everywhere. 

The cap can be represented by the following formula, which contains (N+5) vari- 
ables, where N is the number of the adjacent points of the pole. Initially, cp and \\r are 

(x^y^z.) = [R2
icoaei,R

2
i8iaBi,0)x 

1 0         0 

0 coscp  sincp X 

0 -sincp coscp_ 

cos\j/  sin\j/ 0 

-sin\y COSY 0 
0        0     1 ,0£i<N. 

where (xp,yp,zp) is the coordinate of the pole, 

N is the number of points adjacent to the pole, 
(x^y^Zi) are the coordinates of the ith point adjacent to the pole, 

qi=2p*i/N, 
R2

t is the distance from (xp,yp,zp) to (x^y^), 
cp is the angle of the rotation around the x axis, and 
\\r is the angle of the rotation around the z axis. 

zero. The distance from the pole to an adjacent point should be always positive, so we 
use the square root of the real distance as the variable to guarantee that the distance 
is positive. The variables in this formula are Xp, yp, zp, cp, y, and Rt ,0<i<N, so the num- 
ber of variables is N+5. Initially, these variables can be set in accordance to the initial 
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Normal vector determined by two 

parameters <P and ¥ 

Cap 

pole 

\Pp=(xp>yp>zp)    2 

pi,i=(xi>yi>zi) 

Pl,i-l=(xi-l>yi-l>zi-l) 

3,i-l 

3,i+l 

Pi i and Pi i-i are two consecutive control points on the row 
immediately adjacent to the pole. 

Figure 4.7 An example of the cap 

closed surface (the caps of the initial surface should be planar surely). An example is 
depicted in Figure 4.7 . 

The internal energy Eint for the cap is as below: 

Let Pii and P2;j, (Ki<N, be the two closest rows to the pole (P^ is the row imme- 
diately adjacent to the pole.). 

/2V-1 

E      = int Y,\\PP
+P2J-lPu\\2 + \\PLi+P3J-2P2A2 + \\PLi-l+Pl,i-2PUi+l 

^i = 0 
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The external energy for the cap is: 

JV-l 

i = 0 

Where Atiis the area of triangle PpPi^P^i+i, 
Et i is the average external energy of triangle PpPi(iPi,i+i, 

Ayj is the approximate area of rectangular mesh Pi,iPi,i+iP2,i+iP2,i, and 
Eri   is    the    average    external    energy   of   rectangular   mesh 

Pl,iPi,i+ip2,i+iP2,v 

The area factor is introduced in the above formula because the contribution of 
each patch should be in proportion to its size. 

Eti and Erjcan be estimated by 

1) sampling a certain number of points in the patch, 

2) finding the energy of each point from array G denned in the previous section, 
and finally 

3) averaging the external energy. 

Ayj can be coarsely estimated by dividing the rectangular patch into four trian- 
gles through the central point, and then summing the area of every triangle. 

Every time before Powell is called, the weights Wint and W^ are determined by 
RATIOext.to.jnt, the current internal energy Eint) and external energy Eext of the cap. 
Then, Powell is called to minimize Efotal =( Wint*Eint + W^E^) of the cap by ad- 
justing those (N+5) variables. There are two independent caps on the surface, so this 
step will be executed twice. 

Stage 2. Curve fitting 
Suppose there are MxN control points on the surface, that is, there are M rows 

and N columns. Here, N is always even. Let N=2K. There are N Meridians on this sur- 
face. 

Now we select the Meridians with odd (or even) index to do the curve fitting (and 
the rest are for the mesh fitting, explained later), so there are K such meridians. 

At the beginning of this stage, these selected odd(resp. even)-indexed meridians 
are the same as the corresponding meridians at the previous iteration (or, for the first 
iteration, the corresponding meridians of the initial sphere) except for those control 
points shared with the caps. 

We treat each odd(resp. even)-indexed meridian individually as if they are inde- 
pendent of one another. Each odd(resp. even)-indexed meridian is just like an ordi- 
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nary snake except that it is also influenced by the control points on the two 
neighboring Meridians. 

The first two and last two control points of the odd(resp. even)-indexed meridian 
are shared with the caps, so these four points are supposed to be good and won't be 
tuned under any situation. Each meridian has M control points and (M-l) spans. Be- 
cause the first and the last spans are fixed by the caps, we only need to handle at most 
(M-3) spans for each odd(resp. even)-indexed meridian when doing curve fitting. 

A odd(resp. even)-indexed meridian is tuned adaptively, and we just deal with 
the bad spans of the meridian at each iteration. We check the external energy of each 
span. Those spans with average external energy greater than ERRORthreshold are 

bad. We find out the bad connected spans (bad connected spans have to be processed 
simultaneously). This way, we can classify those bad spans into several groups, and 
each group is independent of each others. Let Gs be one of the groups (Gs is itself a 
miniature snake in some sense). An example is shown in Figure 4.8 . In this example, 
let the solid thick curve, composed of P2i, P31, and P^, be Gs. The dotted and the solid 
line segments show the control points involved when calculating the internal energy. 
The external and internal energies are as below. In this example, there are 3 control 
points P21, P31, and P41 to adjust, which leads to 9 variables injected to Powell. 

The average external energy can be obtained by sampling a certain number of 
(5 4 \ 
y lip. ,,+p. ,, -2P. ,n2+ y i|p. n+p. .-2P. j2 

L^ \\   1 + 1,1       r-1,1 1,1||        Z-rfll   t. 0       i,2 1, 1|| 
V£=l i=2 J 

E.  , int 

4 

|j 4,   1 tTI,l| I 

i= 1 

W       —   V    P     P ^ext ~   ]_ |r i, Iri+l,l 

where Et is the average external energy of the line segment between P^ and Pi+1 j_. 

points, finding the external energy of each sampled point through array G, and then 
averaging those external energies. The length of each line segment is considered be- 
cause the importance of each line segment should be in proportion to its length. 

The weights of those two energies are determined in the same way as we do for 
the cap in the previous stage. 

Suppose there are Hs control points in Gs, excluding those shared with the caps. 

The coordinates of each control point are the three components X, Y, and Z, so 
we have 3*HS variables. 

For all Gs's on all odd(resp. even)-indexed meridians, we call Powell to minimize 

Etotal(= Wint*Eint + Wext*Eext) 

of Gs by adjusting the corresponding 3*HS variables. 
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Figure 4.8 The odd(resp. even)-indexed meridian 
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Figure 4.9 The even(resp. odd)-indexed meridian. 

We may say that the responsibility of odd(resp. even)-indexed meridians is to 
find the frame or profile of the object. 

Stage 3. Mesh fitting 
The surface now is separated by caps and odd(resp. even)-indexed meridians 

into K independent strips, and each strip can be tuned independently now. We select 
the rest even(resp. odd)-indexed meridians, and use them to fit all strips to the data 
(target). These even(resp. odd)-indexed meridians are fixed in stage 2 for the curve fit- 
ting. Each strip contains an even(resp. odd)-indexed meridian. 
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At the beginning of this stage, the even(resp. odd)-indexed meridians are the 
same as the corresponding meridians at the previous iteration (or, for the first itera- 
tion, the corresponding meridians of the initial sphere) except for those control points 
shared with the caps. 

The responsibility of the selected meridians in this stage is to fit each strip to the 
data (target) by mesh fitting (We assume that the odd(resp. even)-indexed meridians 
have done a good job in stage 2 here). 

For each strip, there are 2*(M-1) patches and an even(resp. odd)-indexed merid- 
ian. Because those four patches shared with the caps are supposed to be good by de- 
fault, we only need to consider 2*(M-3) patches. Let S be one of those strips. Now we 
need to determine the goodness of those 2*(M-3) patches in S. A patch is bad if its av- 
erage external energy is greater than ERROR^j-gshoid- We find the connected bad 
patches (these bad patches need to be processed simultaneously), and this way the 
bad patches in strip S can be classified into several groups. 

Let Gm be one of those groups, and Sm be the intersection of Gm and the even(re- 
sp. odd)-indexed meridian in the strip. Sm is itself a small snake, and the internal en- 
ergy of Gm is calculated through Sm. An example is in Figure 4.9 . In this example, let 
the 3 dotted rectangular patches be Gm, and the thick solid line segments composed 
of P21, P31, and P41, be Sm. The dotted and the solid line segments show the control 
points involved when calculating the internal energy (13 control points are involved), 
and the diagonal patches together with the dotted ones are those patches involved 
when we calculate the external energy of the even(resp. odd)-indexed meridian (there 
are 8 patches involved). In this example, the control points tuned are P21, P31, and 
P41, and thus there are 9 variables injected to Powell for this example. 

The internal and external energies for the example in Figure 4.9 . are as below: 

E.  . = mt 

(   5 4 ^ 
LIIP. .. +p. ,, -IP. j2+ y lip. „+p. „-2P. J2 

II   1+1,1        i-l.l 1,1|| L* ||   1,0        i,2 1, 1|| 
vi=l i = 2 J 

E     = y y A. ,-E. . 
ext      Ld  1—1    i.j     i,j 

I-1./-0 

Where    £jj    is    the    average    external    energy    of    rectangular    mesh 
^hj^ij+l^i+lj+i^ij+l' andAij is the approximate area of the rectangular mesh. 

The way to compute the internal energy is exactly the same as that for odd(resp. 
even)-indexed meridian in stage 2, and the way to estimate the area of a patch and 
the average external energy is explained in the previous section for the cap. 

Suppose Sm contains Hm control points, and then there are 3*Hm variables to be 
tuned by Powell. 
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Figure 4.10 Subdivision. Notice that no row is added on the cap 

For all Gm's on all even(resp. odd)-indexed meridians, we call Powell to minimize 

Etotal <= Win^int + Wext*Eext) 

of Gm by adjusting the corresponding 3*Hm variables. 

Stage 4: Sub-division 
At this step, every rectangular patch is divided into four, except those on the 

caps. We do not add a new row to the cap because these triangles around the pole are 
small already, so adding a new row to the cap might lead to degenerate triangles. This 
is illustrated in Figure 4.10 . 

These four stages in the flowchart correspond to those in the previous para- 
graph. If the cap is already close to the real object, that is, it has low external energy, 
then we can skip this stage. The following two stages are to do the curve and mesh 
fittings. We have an inner loop for these two stages in the first two iterations. In this 
inner loop, we choose the odd-indexed and even-indexed meridians in turns in these 
two stages for the sake of fairness. The fourth stage is to do the subdivision. We switch 
from the long-distance energy field to the short one after the first iteration. 

4.5 Experiments 
We now show results from eight experiments on real data. Five of them are on 

the tooth, wood, phone, headl (Carol), and head2, respectively. One shows how the fit- 
ting surface of the headl experiment evolves, and the last two show the robustness of 
this algorithm by giving a very bad initial surface. Then we show one more experi- 
mental result on synthetic data, which shows the difference in the surface normal be- 
tween the fitting surface and the underlying synthetic surface. 

In all of these eight experiments, we start with the same crucial parameters to 
show the robustness and stability of this algorithm. ERRORthreshold is 1-0- RATIOext_ 
to-intisl°- 

These experiments are performed on a Sun Sparc-10 workstation. For each ex- 
periment, we show the original data and two shaded results. The shaded surface is 
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based on the C B-spline surface, which is constructed directly from the control points 
obtained (in fact, these control points are for C° B-spline surface). All surfaces shown 
here are C   and closed, including the two poles. 

The general information of the first five experiments is listed in Table 3: and Ta- 
ble 3:Because the cap of the surface is represented by a set of parameters rather than 
control points, the numbers of control pointsare approximated numbers.. 

Table 4: Performance Summary (cont.) 

size of the external 
energy cube 

initial average error in 
voxels (cylinder initially) 

final average error in 
voxels (cylinder 

initially) 

tooth 150X150X150 4.42 0.6 

wood 64X64X64 3.0 0.27 

phone 150X150X150 5.62 0.39 

head 1-Carol 300X300X300 18.00 0.78 

head2 300X300X300 20.15 1.18 

Table 3: Performance Summary 

number 
of data 
points 

number of 
control 
points 

run time (cylinder 
initially) 

run time (sphere 
initially) 

number of 
subdivision 

s 

tooth 11841 263 4 mins 3 mins 1 

wood 5562 212 1.5 mins 1.0 mins 1 

phone 15776 247 4.5 mins N/A 1 

head 1-Carol 136082 2632 21.5 mins 14 mins 2 

head2 45514 2632 31.5 mins 24 mins 2 

In the tooth experiment, we start with 11841 data points. A 150x150x150 cube 
is used to store the external energy. The running time is around 4 minutes. There are 
around 263 control points used on the resultant surface. The result is in Figure 4.11 . 
The initial surface is a cylinder in this experiment, we also tried the spherical initial 
surface, and it does not make any significant difference, because the object itself is not 
very complex. The surface is subdivided once, which means there are two iterations. 
One of the poles is on the top in this experiment, and we can see the top of the tooth 
is smooth (the other pole is at the bottom). The average external energy of the surface 
point is initially 4.42 voxels, 1.0 voxel after the first iteration, and 0.6 voxel after the 
second iteration (one sub-division has been done). 
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(a) data points (b) shaded result 1 

Figure 4.11 Tooth 

(c) shaded result 2 

(a) data points 
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Figure 4.12 Wood block 

In the wood experiment, we start with 5562 data points. A 64x64x64 cube is used 
to store the external energy. The running time is around 1.5 minutes. There are 
around 212 control points used on the resultant surface. The result is in Figure 4.12 . 
The initial surface is a cylinder in this experiment, we also try the other algorithm for 
the initial surface, and it dose not make significant difference because the object itself 
is not too complex. The surface is subdivided once, which means there are two itera- 
tions. The two poles are on the left and right sides, respectively. The average external 
energy of the surface point is initially 3.0 voxels, 0.41 voxel after the first iteration, 
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Figure 4.13 Phone 

(c) shaded result 2 

and 0.27 voxel after the second iteration (one sub-division has been done). The distri- 
bution of the external energy is shown in (c). The length of each vector in (c) is in pro- 
portion to the external energy of the associated surface point. 

In the phone experiment, we start with 15776 data points. A 150x150x150 cube 
is used to store the external energy. The running time is around 4.5 minutes. Around 
247 control points are used for the resultant surface. The result is in Figure 4.13 . The 
initial surface is a cylinder. The other initial surface construction algorithm cannot be 
applied because the center of mass falls outside the object and we cannot sample any 
points in many directions, so the system switches to the cylinder scheme for the initial 
surface. The surface is subdivided once, which means there are two iterations. The 
two poles are at the top and the bottom, respectively. The average external energy of 
the surface point is initially 5.62 voxels, 0.45 voxel after the first iteration, and 0.39 
voxel after the second iteration (one sub-division has been done). 

In the headl experiment, there are 136082 data points. A 300x300x300 cube is 
used to store the external energy. This set of data is from INRIA, by courtesy of pro- 
fessor Ayache. We project the data points onto 3D space and fill up the top and bottom 
of the head, which are hollow originally. We consider points in the same voxel one 
point, so the number of data points here is different from that of the original one.We 
also tried both initial surface algorithms. The running time is around 21.5 minutes 
for the cylindrically initial surface, and 14 minutes for the spherical one. Around 2632 
control points are used on the resultant surface. The results from these two different 
initial surfaces are much alike, so we just show the result in Figure 4.14 from the cy- 
lindrical initial surface, which is harder. Figure 4.14 a shows the data points, and 
Figure 4.14 b and Figure 4.14 c are the results. The computational time is reduced by 
spherical initial surface because there is already some geometrical information in it. 
The surface has been subdivided twice, which means there are three iterations. The 
two poles are at the top and the bottom, respectively. The average external energy of 
the surface point is initially 18.00 voxels, 1.45 voxels after the first iteration, 0.88 vox- 
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(a) data points (b) shaded result 1 
Figure 4.14 Headl (Carol). 

(c) shaded result 2 

el after the second iteration (one sub-division has been done), and 0.78 voxel after the 
third iteration (two sub-divisions have been done). It is interesting to note that our 
number of vertices (2632) is significantly lower than the one reported by others. In 
Gueziec's [36] experiment on this data, 256x128(=32768) control points are used, and 
in Nastar's [46] experiment, 11130 nodes are used. One more difference between our 
result and theirs is we form a closed C1 surface with the top and bottom closed. 

In the head2 experiment, we start with 45514 data points. A 300x300x300 cube 
is used to store the external energy. This set of data is from the Media Lab, MIT. For 
the same reasons as in the headl experiment, the number of data points here is dif- 
ferent from that of the original one. We tried both algorithms for the initial surface. 
The running time is around 31.5 minutes for the cylindrically initial surface, and 24 
minutes for the spherical one. There are around 2632 control points used on the re- 
sultant surface. Figure 4.15 shows the result. In Figure 4.15 , (a) shows the data 
points, and (b) and (c) are the results from the cylindrically initial surface, (d) shows 
the initial spherical wire-frame surface, and (e) and (f) show the result from the spher- 
ical initial surface. Figure 4.16 shows the evolution of the fitting surface with the cy- 
lindrically initial surface, and both the shaded and wire-frame results are shown. The 
average external energy of the surface point is initially 20.15 voxels, 1.43 voxels after 
the first iteration, 1.21 voxels after the second iteration (one sub-division has been 
done), and 1.18 voxels after the third iteration (two sub-divisions have been done). In 
this experiment, we can tell that the result from the spherical initial surface is a little 
bit better, and can be obtained faster. It is because the spherical initial surface has 
already captured some geometrical properties, and thus simplifies the calculation to 
some degree. The surface is subdivided twice, which means there are three iterations. 

We also performed an experiment to try the robustness of this algorithm by giv- 
ing a bad spherical initial surface. The data points here are the same as those of head2 
experiment. Suppose there are two directions in which we cannot sample and data 
point, and the interpolation scheme fails, then there are two deep cavities on the ini- 
tial surface as shown in Figure 4.17 . In (a), we shows the wire frame of the bad spher- 
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(a) data points (b) shaded result 1 for (c) shaded result 2 for 
cylindrically initial surface   cylindrically initial surface 
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(d) Spherical initial surface 
(e) shaded result 1 for 
spherical initial surface 

(f) shaded result 2 for 
spherical initial surface 

Figure 4.15 Head2 

ical initial surface with two cavities at the top of the head and jaw. (b) and (c) show 
the cavities at the jaw and the top, respectively, (d) is the shaded result after the en- 
ergy minimization, (e) and (f) show the counterparts of the cavities in (b) and (c), re- 
spectively.The cavities have been filled, and the final surface in (d) is fine. In (e) and 
(f), we can also see the poles are well handled, and the poles on the constructed sur- 
face, which are at the top and bottom, are very smooth. The computation is around 24 
minutes for the experiment. Based on our experiments on data points head2, this al- 
gorithm can tolerate up to 18 cavities, and we obtain similar results in around 24 min- 
utes. Figure 4.18 shows the experiment on the initial surface with 18 deep cavities, 
(a) shows the defective initial surface, and (b) shows the corresponding views of the 
final surface. It is evident that all the cavities have been handled. This indicates 
strong resistance against the bad initial surface. 

From the above experiments, we can see that there is not much difference in the 
quality for these two different initial surface schemes, and this algorithm can also tol- 
erate, to some extent, the error in the initial surface. The main difference is the com- 
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(a) Initial surface. (b) result 1 (c) result 2 (d) result 3 

(e) Initial wire frame      (f) Wire frame 1 (g) Wire frame 2 (h) Wire frame 3 

Figure 4.16 The evolution of the experiment of head 1. (a) is the initial surface 
(cylinder), (b), (c), and (d) are the deformed results for each iteration. The 
surface has been sub-divided twice, (e), (f), (g), and (h) show the wire frames of 
(a), (b), (c), and (d). 

(a) One view of the defective initial 
surface. 

(b) The corresponding view of (a) of 
the final surface. 

Figure 4.18 A test of the robustness on the defective surface with 18 deep cavities 

putation time especially when the fitted object is complex. This shows the robustness 
of this algorithm because it works well when good initial surface is unavailable at the 
expense of longer computational time. 
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The cavity at top 

I 

The cavity at ja 

(a) A spherical initial surface 
with two cavities at the jaw and 
the top of the head. 

v 

(b) The cavity at the jaw. (c) The cavity at the top. 

"X:,.    I. 

(d) The shaded result from 
the bad spherical initial surface. 

(e) The jaw in the final result. 

Figure 4.17 A test of the robustness of this algorithm 

(f) The top of the head in 
the final result. 

In headl and head2 experiments, there are discontinuities at the bottom (for 
both experiments) and at the top (for headl experiment). They are flat at those parts. 
From the results shown so far, we can see those discontinuities come out well because 
we reduce the importance of the smoothness constraint as the process goes on, and we 
can handle discontinuities. 

In Figure 4.19 we show the difference in surface normal between the fitting sur- 
face and the underlying synthetic surface. We conduct this experiment because the 
normal and the shape of the surface are highly correlated. The normals of the fitting 
surface and the underlying object might be different while they are physically very 
close to each other. This experiment is to show how faithful our algorithm is in terms 
of the normal. Synthetic data are used so we can calculate the normal of the underly- 
ing object. It turns out after this experiment that the difference in the normal is rea- 
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(e) Raw data (f) Fitting result (g) Error in normal    (h) External energy 

Figure 4.19 Estimates of the error in terms of the normal. 

sonable using our approach.We use the following two implicit functions to generate 
the synthetic data points: 

(x2+y2 + (z-a)2) ■ (x2 +y2 + (z + a)2)  = bA       where a=67.68, and b=68.96. 
and 

where a=80, b=40, and c=60. x]2 . fy^2 

-I   +1^1   +1 -I' = 1 
a 

First we sampled points from these two functions as shown in (a) and (c). A 
200x200x200 cube is used to store the external energy, (b) and (f) are the fitting re- 
sults, respectively, (c) and (g) show difference in the surface normal between the fit- 
ting surface and the real surface, (d) and (h) show the distribution of the external 
energy, respectively, and the length of the vector reflect the magnitude of the external 
energy at this point. The average external energies of (d) and (h) are 0.224 voxels and 
0.5 voxels. The length of each vector in (c) and (g) reflects the difference between the 
two corresponding normals of a surface point. These vectors are exaggerated a little 
bit so we can see the distribution of the error easier. Please notice high error points 
concentrate at the poles. It is because we enforce the planar constraint at the polar 
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areas which leads to these artifacts. In the other places, the errors are reasonable. In 

Table 5: Errors 

size of the 
external energy 

cube 

final 
average 
error in 
voxels 

[0,3) [3, 
6) 

[6,9 
) 

[9,1 
2) 

[12,1 
5] 

>1 
5 total 

peanut 200X200X200 0.224 4239 310 25 85 0 0 4659 

ellipse 200X200X200 0.5 1926 143 54 47 5 0 2175 

(c) 4659 surface points are sampled. 4239 points have an error between 0° and 3°, 310 
points between 3° and 6°, 25 points between 6° and 9°, 85 points between 9° and 12°, 
and no points have an error more than 12°. In (g) 2175 surface points are sampled. 
1926 points have an error between 0° and 3°, 143 points between 3° and 6°, 54 points 
between 6° and 9°, 47 points between 9° and 12°, 5 points between 12° and 15°, and 
no points have an error more than 15°. This information is also shown in Table 5:. 

4.6  Discussion 

There are several important aspects in this paper: 

1. We do not use the traditional adaptive approach for this application because 
it is almost impossible to determine whether a patch is good or not correctly. Our new 
scheme is a coarse-to-fine approach. It divides all patches after each iteration. It is 
still efficient because if a patch is really good, then the only operation applied to it in 
the future is just sub-division, which costs very little. This scheme also preserve the 
rectangular structure of the surface after each sub-division, which makes generating 
smooth surface easier and cheaper. This approach is free from the degenerate patch 
problem because a rectangular patch is always divided into 4 rectangular ones. 

We prefer the rectangular mesh to the triangular mesh because it is much easier 
to construct a smoother surface from the rectangular mesh, and the properties, such 
as derivatives, are much easier to obtain. 

2. We use linear B-splines. On the one hand, it is the cheapest, and on the other 
hand, it might divide the surface into independent strips. If higher degree B-splines 
are employed, the relationship between the control points and the patches is more 
complex. 

3. There is always a large matrix associated with the minimization algorithm, 
and the size of the matrix is in proportional to the square of the number of the vari- 
ables. This might result in the memory explosion if there are many control points to 
handle at a time. Also, the numerical method goes extremely slow under this situa- 
tion. We break a 3 dimensional problem down into several 2 dimensional problems, 
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and then the space and time complexities can be reduced significantly. We separate 
the surface into several strips, so Powell is always called with a limited number of 
variables. For example, if the fitting surface has MxN control points, the maximum 
number of variables sent to Powell is around 3*(N-4). Only the bad parts of the strips 
and the meridians are tuned by Powell. So, in practice, the number of variables is far 
below 3*(N-4). The caps only have (N+5) variables, which is also low. 

4. We reduce the weight of the internal energy implicitly as the iteration goes on, 
because we have more confidence in the fitting surface after each iteration. This way, 
the discontinuities of the data can be well preserved. 

5. When dealing with an open surface, which is much easier, we just skip the 
first stage (for the cap). 

6. Powell can handle many kinds of functions. This gives us flexibility to define 
the energy for any specific property. Powell may also be replaced by other numerical 
methods. Compared to gradient descent, Powell is more accurate and reliable, and in 
our application Powell is not necessarily slower than gradient descent. From our ex- 
periments, we know our algorithm has significant tolerance against a bad initial sur- 
face. We attribute this stability and tolerance to minimization algorithm. 

7. Through the coarse-to-fine approach, both the global structure and the de- 
tailed information on the fine parts of the object can be acquired at different itera- 
tions. The global information, which might be applied to recognition and database 
search, is obtained in the first iteration, and the details of the object can be obtained 
in the later iterations. 

8. Due to the independency among the caps and meridians, our algorithm could 
run in parallel, so the computational time could be further reduced significantly by 
parallel processing. 

9. This system is easy to control because there are only two global parameters to 
adjust. In all of our experiments, the same values were used. 

10. Overall, this system is reasonable in robustness, accuracy, time complexity, 
and space complexity. Its output surface can be easily taken by the other surface gen- 
erating algorithm to construct a smooth surface. 

There are also some problems left: 

1. We cannot handle the object with deep cavities, especially the through ones. 
This problem is alleviated by the short-distance external energy, but it is not solved 
yet. Futhermore, we also cannot differentiate more than two objects when they are 
very close to one another, and we might mistake them for one object. We are develop- 
ing some algorithms in 2D to tackle these problems, and we believe they can be ex- 
tended to 3D in the future. 

• 
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2. We need a more systematical way to determine the number of the iterations 
needed. Now the number of iterations is specified by the user. In our experiment, we 
iterate three times for the complex objects and twice for the simpler objects in our ex- 
periments. According to our experiment, reasonable results can be come by in three 
iterations. Yet, we would like the system to differentiate the complex objects from sim- 
ple ones by itself, so it can determine the number of iterations. 

3. We also would like to find a way to set reasonable ERRORti^^^ and RATIO- 
ext-to-int directly by the computer. Now, they are set by the user. Under some situation, 
we may not know much about the input data, so we would like our system to be able 
to set these two parameters reasonably under this situation. 

4. The self-intersection of the surface is a potential problem, even though we 
have not observed it in practice. Theoretically, this can be solved by adding an energy 
term Ejntersection, which is zero when there is no self-intersection, and infinite when 
the self-intersection occurs. We can rule out this possibility of the self-intersection if 
the there is no self-intersection on the initial surface, because Powell can guarantee 
that the function value of the result is always less than or equal to the that of the ini- 
tial guess. The problem with this approach is it is too expensive. It is expensive to 
check if there is a self-intersection on the surface. 
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5 Recovering Surfaces, 3-D 
Intersections, and 3-D Junctions 

Using Perceptual Constraints 
Gideon Guy and Gerard Medioni 

We treat the problem of recovering surfaces from an incomplete set of input mea- 
surements, by applying perceptual constraints to the data. This extends our 2D per- 
ceptual Grouping work [64] to three dimensions. We show how both the Extension 
fields and the Saliency indicators, which were used for the 2-D case, can be elegantly 
generalized to 3-D. 

We treat sparse "clouds" of non-oriented points, oriented points, and partial sur- 
faces, in a uniform and non-iterative way. We are able to handle scenes of any genus, 
any number of discontinuities, and of any number of objects, without a priori knowl- 
edge or special considerations. The result is in the form of three dense saliency maps 
for surfaces, intersections between surfaces, and 3-D junctions. These saliency maps 
can then be used to guide a "following" process to generate a CAD model of surfaces, 
space curves, and 3-D junctions. We present some preliminary results on computer- 
generated images. 

5.1  Introduction 
Perceptual organization has gained popularity in the Computer Vision research 

in the past few years, and its importance has been widely recognized. First proposed 
by Lowe [67], and later by numerous researchers (e.g. [59,60,69], and see [63] for a 
more complete review), perceptual considerations have been used for a variety of 
problems in Computer Vision. All of above attempts took as input two dimensional 
image features. 

Among the perceptual constraints used, the most common are: Co-Linearity, 
Proximity, Simplicity, and Co-Curvilinearity. These constraints are used to handle 
gaps and errors in input data, and assist in a higher-level description. The same kind 
of task is present in 3-D inputs, where some 3-D data is available, but it is not com- 
plete and/or it is noisy. Such input data is normally acquired by range imaging or as 
a result of a process that finds depth from X (stereo, shape from shading etc.). Here 
the task is to describe the underlying surfaces. 

Much work has been done in fitting surfaces to clouds of points. The deformable 
models approach (first proposed by Kass et al. [65] for 2D, and in [70] for 3D) attempts 
to deform an initial shape so that it fits a set of points through energy minimization. 
The deformable shape is subject to certain constraints (such as smoothness, stiffness 
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Figure 5.1 (a) The 2-D Extension field (b)the 2-D point field. 

etc.) and the point data set behaves as an attractive energy field. Sander [61] have re- 
cently proposed a local algorithm to describe surfaces from a set of points. A quadratic 
surface is estimated around each data point, and an iterative process refines the local 
surfaces, and creates graph-like connections between compatible patches. Others 
have used similar methods (for a summary see [66]). 

All of the above methods are computationally expensive as an iterative process 
takes place. Also in many of the methods, only one genus-zero object can be described 
at any one time, and surface boundaries and discontinuities are not always easy to 
describe. 

We start by briefly discussing our older 2-D work, emphasizing the derivation 
and justification of the combination mechanisms. This will serve as an introduction 
to the derivation of the 3-D combination mechanisms, which share the same para- 
digms. 

5.2 From 2D fields to 3D fields 

In our 2-D work [64] we describe two basic fields, namely, the Extension field and 
the point field. The Extension field is used when edgels are present in the input, and 
the point field is used whenever non-oriented features are present. The 2-D version of 
the two fields are shown in Figure 5.1 The elements of the 2-D Extension field de- 
scribe the most likely orientation of a curve passing everywhere in space. The above 
field is used as a mask in a so-called directional convolution, in which the mask is ori- 
ented along segments of the input image, votes that consist of strength and orienta- 
tion are accumulated at each site of the image, to later determine the saliency of such 
site. The result is thus a saliency map, where high values denote high likelihood of a 
curve passing there. The actual combination at each site is described next and paves 
the way to the 3D case. 
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Figure 5.2 The principal axis of the votes collected at a site is taken as an 
approximation of the preferred direction. 

5.2.1 Combination per site - The 2-D case 

Ideally, we would want an averaged majority vote regarding the preferred orien- 
tation at a given position. In practice, we treat the contributions to a site as being vec- 
tor weights, and compute moments of the resulting system. Such a physical model 
behaves in the desired way, giving both the preferred direction and some measure of 
the agreement. We use the direction of the principal axis (EVmin ) of that physical 
model as the chosen orientation (See equation (5.1)). 

m2Q mn 

mu m02 

EVmin 

EVmax 

Xmin     0 
0     Xmax 

[EVminT EVmax^ (5.1) 

This acts as an approximation to the desired majority vote, without the need to 
consider the individual votes. 

The saliency map strength values are taken as the values of the corresponding 
kmax at each site. So, large values would indicate that a curve is likely to pass 
through this point. This map can be further enhanced (as shown in the next section) 
by considering the eccentricity, or l - (Xmin/Xmax) . When that value is multiplied 
by the previous saliency map we achieve better selectivity, and only curves are high- 
lighted. This results in a map defined by   xmax - Xmin . 

5.2.1.1 Justification - The 2-D case 
Basically, what we are looking for is a function that takes positive vectors as in- 

put and results in a measure of the agreement in their orientation. The result should 
satisfy several criteria: 

• We want the result to be normalizable, so that we can compare different sites 
on a standard scale. 

• The measure needs to be monotonically increasing with the addition of positive 
contributions. 

• It should give higher values to ^better' (more directed) spatial arrangements of 
vectors. 

• We want the effect of proximity to be independent of the affect of agreement. 
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It is easy to show how the model behaves when a single vector is added to it. As- 
sume the variance-covariance matrix is as follows at state t: 

C* = 
m2Q mn 

mn m02 

(5.2) 

The sum of the eigenvalues is the trace of the matrix: 

*iin + Cx = m20 + mO2 (5-3) 

Now adding a new vector V = [äCOSö,Äsinö]T to the system will result in a new 
state t+1: 

K^ + Cai = m20 + m02 + (Äcosö)2 + (i2sin0)2 = m*0 + m^+R2 (5.4) 

Note that the angle 8 has disappeared on the r.h.s. of (5.4). This means that the 
sum of eigenvalues is independent of the orientations of the voting vectors and can 
hence be used as an indicator of proximity (a wider sense of proximity of course), and 
as a primitive saliency measure. 

Equation (5.4) can obviously be written as: 

N 

\nin + *<max=   L*? (5-5) 
i= 1 

Where N is the number of segments in the original image. 

We define the eccentricity E = 1 - A.min/x.max as a measure of agreement. Obvious- 
ly this value is between 0 and l1. Our intuitive notion of'agreement', or of a majority 
vote on a continuous scale, is consistent with the above definition. This means that in 
all cases where we feel that collection A has better 'agreement' than collection B, the 
corresponding eccentricity values will share the same relationship (i.e. E(A)>E(B)). 
This is not to say that both functions are equal, but merely that both are monotonic. 

Eccentricity values by themselves cannot perform as saliency measures since 
sites with very little voting strength can produce high eccentricity values. In fact, con- 
sider a site far away from where the 'action' is, which accepts exactly one vote (This 
can happen in practice). The eccentricity value is 1, but the site is of no importance. 

1.   Since  kmin <. \max   and are both non-negative for a semi-positive definite matrix. 
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However, Consider A^^ itself. Obviously, 

^+   max^A     <;A . + A (5.6) 2 max        min        max v      ' 

By (5.6) it is bounded from both sides by the proximity measure in (5.5) and has 
the eccentricity coded into it: When the value leans towards the left side of (5.6), ec- 
centricity is low and vice-versa. 

Thus, Amax is chosen as the raw saliency measure in our scheme. 

This choice however, may still amplify locations which are very strong in terms 
of number of votes, but weak in eccentricity2. The product of E and A^^ produces the 
desired result, termed the enhanced saliency measure SM, or: 

SM = Amax • (1 - k^/knJ = Amax - A^ (5.7) 

Thus, Amax-Amin is chosen as the enhanced saliency measure. 

It is important to note that other functions of the eigenvalues can also satisfy the 
same conditions of monotonicity, but the ones chosen seem to be the simplest possible 
indicators of the desired behavior. 

5.2.1.2 Detection of Junctions 
A junction is defined as a salient point which also has a low eccentricity value. 

Regular (non-junction) points along a curve are expected to have high eccentric- 
ity values. On the other hand, junction points are expected to have low eccentricity, 
since votes are accumulated from several different directions. By combining the ec- 
centricity and the eigenvalue at a point, we acquire a continuous measure of the like- 
lihood ofthat site being a junction. We redefine our previous definition of eccentricity 
slightly, so that low eccentricity scores high, or: 

The product of our new eccentricity measure and the raw saliency measure A^^ 
yields the junction saliency operator: 

^max =   (W^max) " *max = ^min <5'9> 

This process creates a Junction Saliency map. Interestingly enough, this map 
evaluates to just Xmin at every site (as shown in Equation (5.9)), which simply means 
that the largest non-eccentric sites are good candidates for junctions. By finding all lo- 
cal maxima of the junction map we localize junctions. 

2.   For example, accumulation points and junctions! (where >.min
a^max ) 
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Figure 5.3 What is the most natural normal to a surface passing through point p 
and at the same time tangent to the patch at the origin? 

5.2.2 3-D fields 

In the 3-D case we would like to treat three elementary features, namely, a 
patch, a curve segment, and a point in space. A patch has a known 3-D normal, a 
curve segment has all possible normals lying on a plane, and a point in space has ab- 
solutely no directional data. We will construct a separate field for each of these fea- 
tures. 

5.2.2.1 The construction of the Patch Extension Field 
We assume that a patch with a known normal is available, and we ask the fol- 

lowing question: for a given point in space, what is the most likely normal to a surface 
passing through that given point and also tangent to the original patch? Figure 5.3 
illustrates that issue. It is clear that the desired normal at point p can be found by 
looking at a 2-D scenario, where both the origin and point p are on a plane. This re- 
duces the problem to a 2D one, where the 2-D Extension field can be applied. Thus, 
constructing the 3-D Extension field is merely revolving the 2D Extension field 
around its vertical axis. This is illustrated in Figure 5.4 . Note that unlike the 2-D 
field, where each field element pointed in the direction of the most likely curve, in the 
3-D case, each vector points in the direction of the normal at that location. This makes 
later stages of computation much simpler. 

5.2.2.2 The curve segment Extension Field 
Here we deal with a primitive with partial information regarding the orientation 

of a surface passing through it. All we know is that the given segment has to lie on 
the desired surface. Again we ask the question: What is the most likely surface to pass 
through a point p in space and have the segment at the origin lying on it? The answer 
is very simple. A segment and a point in space define exactly one plane3. And since a 

3.   Except, of course, the points co-linear with the segment. 
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Figure 5.4 The general shape of the 3-D Extension Field. The lower part is omitted 
from the sketch, but is similar to the upper part. Field elements are normal to the 
surfaces shown, and were also removed for display purposes. 

curve segment 

Figure 5.5 The general shape of the curve segment field. All planes go to infinity, with 
diminishing strength. The field elements are in reality normals to the drawn planes 

plane is the best surface in terms of the perceptual constraints, it is also the most like- 
ly to appear. 

A practical way of constructing this field is to take the Patch Extension field and 
convolve it with a multi-directional patch4. This last operation is similar to revolving 
the patch Extension field around itself along the x (or y) axis (referring to notation in 
Figure 5.4 ). By symmetry considerations, it is simple to show that the resulting field 
will have the correct orientations everywhere in space (as shown in Figure 5.5 ). This 
construction also determines the strength values at every site of the field. 

5.2.2.3 The 3-D Point field 
The 3-D point field is even simpler to derive. The only thing in common to all sur- 

faces passing through a point in space and the origin, is that the line connecting the 

4.   The 2-D point field was constructed by the exact same way from the 2-D Extension 
field (in [63]). 
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two points is on all of them. However, in this case, there does not exist a single max- 
imum likelihood normal. That is, at each point in space, many normals are equally- 
likely. Luckily, they all lye on a plane perpendicular to the line formed by the point in 
question and the origin. We thus choose to describe the contribution of all these nor- 
mals with a single 3-D vector pointing in the direction of the above line. We will later 
show how such a voting vector is treated to determine saliencies. 

5.2.3 Directional Convolution 

The process of computing the saliency maps is similar to the 2-D case. We will 
describe it here again for sake of completeness. Computing the Saliency maps can be 
thought of as a directional convolution with one of the above fields (mask). The result- 
ing map is then a function of a collection of fields, each oriented along a corresponding 
short normal in 3-D. The whole operation is performed in a 3-D grid or array. Each 
site accumulates the 'votes' for its own preferred orientation and strength from every 
other site in the image. These values are combined at a site as described next. 

When the input data consists of non-oriented features (e.g. 3-D points), a 2-pass 
convolution was found to work best, first applying the point field in order to estimate 
orientations, and then the patch Extension field, for the final results. The same pro- 
cedure is performed if curve primitives are present in the input image. 

5.2.4 Combination at each Site 

Combination per site is really the process of choosing, for each site, the preferred 
normal that will show up in the final saliency map. The 3-D case will be derived based 
on the same methodology used for the 2-D scheme (as described earlier in this paper). 

5.2.4.1 The 3-D case 
Here we need to consider a 3x3 variance-covariance matrix, as shown in Equa- 

tion (5.10), where A-max, Amid, and Amin signify the three sorted eigenvalues of the 
system. (Note that the 3-D discussion assumes that normals to the desired surfaces 
are doing the actual voting5!) 

m200 miio mioi 
mll0 m020 mon 
mm\ mon m002 

EVmin 
EVmid 

EVmax 

Xmin     0 0 

0     Xmid     0 
0 0     Xmax 

T T T 
EVmin   EVmid   EVmax (5.10) 

The three eigenvectors will correspond to the three principal directions of an el- 
lipsoid in 3-D, while the eigenvalues describe the strengths and agreement measures 
of the 3-D votes. 

5.   Except for the non-oriented case, which is discussed in a separate section. 
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As before Amax is bounded on both sides by the sum of eigenvalues (which cor- 
responds to raw strength) and at the same time encodes the eccentricity. When it 
leans toward the right hand side of Equation (5.11), eccentricity is high and when it 
leans toward the left hand side, eccentricity is low. 

Thus, Amax is selected as a raw saliency measure for surface normals, 
and the corresponding eigenvector determines the orientation of that nor- 
mal. 

To further enhance the measure we can require that the other two eigenvalues 
be low compared to the Amax. This can be achieved by looking at the difference, Amax 
- Amid. The expression will yield high values only when both Amid and Amin are 
small. The most likely normal to the surface, is merely the eigenvector corresponding 
to Amax. 

The same logic holds for intersections between surfaces. Here, we would like to 
look at Amid as a saliency measure. When it is high, so must Amax, and the location 
is really characterized by votes coming from exactly two separate surfaces. 

Thus, Amid is chosen as a raw saliency measure for intersection be- 
tween surfaces. 

Again, this measure can be enhanced by considering Amid - Amin. This last ex- 
pression will exclude locations along intersection curves that belong to a higher-level 
intersection(i.e. a junction). The direction of the curve is given by the eigenvector per- 
pendicular to the two surfaces, or the one corresponding to Amin. 

Lastly, we claim that large values of Amin will correspond to locations where 
three (or more) smooth surfaces intersect, or a 3-D junction. It is clear that if Amin is 
large, so are the other two. Three large eigenvalues describe a spherical distribution 
of normals, meaning normals from many different orientations have voted for that 
point in space. 

Amin is thus chosen as the junction saliency map. 
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The 2-D and the 3-D results can be summarized in Table 6:. The highlighted col- 

Table 6: 2-D and 3-D results 

Feature 
2-D raw 
saliency 

2-D enhanced 
saliency 

3-D raw 
saliency 

3-D enhanced 
saliency 

Junction A,min Amin Amin Amin 

curve Amax Amax - Xmin Amid Amid - Amin 

surface Amax Amax - Amid 

umns emphasize a somewhat surprising correspondence between the cardinality of 
the feature and the eigenvalues. 

As usual, a disclaimer is in order. The above heuristic approach is by no means 
the only (or the best) indicator of saliency. We believe that it is one of the simplest to 
implement, is fairly intuitive, and proves to behave well as an indictor of saliency. 

5.2.4.2 Combination per site for the Point field - 3-D case 
when only 3-D points are available (no orientation), we first attempt to find a 

maximum likelihood normal to those points, with the aid of the Point field. Again we 
compute the 3 eigenvalues and eigenvectors, but a different interpretation is now 
needed. Recall that we selected a vector lying along the two points to represent all 
possible surfaces. 

Recovering surface normals requires merely to select the eigenvector corre- 
sponding to the smallest eigenvalue. This orientation will be the vector perpendicular 
to the best plane described by the ellipsoid of votes. 

In order for a certain location to be a good candidate for a surface, the votes have 
to distributed in such a way that they create a "flat" sphere. This can obviously be 
tested by looking at Amid - Amin. Large values of that term will indicate high likeli- 
hood of a surface passing through the location. 

The above procedure assigns orientations to the given set of input points. It 
could also assign strength to points, thus reducing the influence of noise before the 
second pass. 

Unfortunately, it is impossible at this stage to recover intersections and junc- 
tions from the computed maps. It is necessary to perform a second convolution using 
the Patch Extension field, on the input data, which now has orientation data avail- 
able. Obviously, the final results when a cloud of non-oriented points is given, are not 
as good as with oriented input data. 
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(a) (» 

Figure 5.6 Input consists of randomly selected set of points lying on the two 
intersecting surfaces, (a) A schematic model of input (The lighter line denotes 
the intersection between surfaces), (b) Projection of input samples. 

5.2.5 Noise tolerance 

Similar to the 2-D case, the scheme is not sensitive to noise in the form of erro- 
neous features, or localization errors of the measurements, since a voting scheme is 
employed. Also, a priori distribution of noise is expected to be directionally uniform, 
such that computed orientations are not corrupted. Saliency selectivity6, however, 
could suffer when noise is present. 

5.3 Results 
We have generated some synthetic images to test our scheme. The first example 

consists of two planes positioned in space as shown in Figure 5.6 . We randomly sam- 
pled the planes of Figure 5.6 . Grid size was 50X50X50, each plane has -100 samples. 
Since 3D saliency maps are 4D in nature7, we thresholded (for display purposes) all 
maps to a point where the 2D projection becomes legible, and small line segments de- 
note the orientation at each site In practice one would like to follow the dense saliency 
maps, and extract a description of each surface8. The task of following the surfaces 
along the saliency maps was not preformed in this work. Figure 5.7 shows the salien- 
cy maps for surfaces and curves. Note that the maps are dense now, and every site 
contains a normal. Also, the orientation of the segments in the intersection map 
(Figure 5.7 (b)) are pointing in the direction of curve. 

6. i.e., the variance between figure and ground in the saliency maps. 
7. Strength and orientation at each 3D site. 
8. e.g. by a triangulation. 
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(b) 

Figure 5.7 (a) surface saliency map. (b) Curve saliency map. 
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(a) 

Figure 5.8 (a) A schematic model of input (The brighter lines denote the 
intersections between surfaces, and the dot is the 3D junction), (b) Projection of 

(c) 

Figure 5.9 (continued)(c) Junction saliency map. 

Figure 5.6 describes a scenario with three intersecting planes. Figure 5.9 
shows the three corresponding saliency maps. Both the surface map and the intersec- 
tion map tend to decay toward the edges of our 3D space. This is due to the limitations 
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(b) 

Figure 5.9 (a) surface saliency map. (b) Intersection saliency map. 
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Figure 5.10 (a) A schematic model of input (The brighter lines denote the 
intersections between surfaces), (b) Projection of input samples. 

of our display and the application of a constant threshold to the data. Figure 5.10 de- 
picts an example with curved surfaces. Here a sphere is intersected with a plane. As 
before, the plane consists of-100 measurements, and the sphere has about 200 mea- 
surement points. Results are shown in Figure 5.9 . 

5.3.1 Noise tolerance 

We choose a simple curved surface to illustrate the noise immunity of the 
scheme. A part of a sphere is chosen, and -150 points are randomly selected on the 
sphere, as shown in Figure 5.12 . We 'sprinkle' the space with an increasing number 
of erroneous segments. The results in Figure 5.7 show the surface saliency maps with 
125,250, and 375 additional random segments. It is easy to see that they virtually the 
same. The input set with 250 noisy points is shown in Figure 5.12 (b) for reference. 

Finally, we show an example where the input consists of a cloud of non-oriented 
points, with a considerable amount of noise. Again a quarter of sphere is embedded in 
noise. The sphere has -200 data points, and -100 noise points, as shown in 
Figure 5.14 (a). 

The first phase is to compute normals to the existing input points. This is done 
by convolving with the 3D Point field. Figure 5.14 (b) shows the result of the first 
phase, note that not only do the points have orientation vectors attached to them, but 
many of the noise points have been attenuated. The second phase is the standard 
Patch extension field convolution. The final result is shown in Figure 5.14 (c)l. 
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(b) 

Figure 5.11 (a) surface saliency map. (b) Intersection saliency map. 
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Figure 5.12 (a) Sample points of a quarter sphere centered at the origin.(b) Same 
sphere embedded in 250 noisy points. 
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(a) 

(b) 

Figure 5.13 (a) surface saliency map without noise, (b) with 125 noise segments. 
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(c) 

(d) 

Figure 5.13 (continued) (c) with 250 segments, (d) with 375 noise segments. 
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(a) Input Image 

(b) With estimated normals and strength 

Figure 5.14 Results of saliency analysis 
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Figure 5.14 (continued) (c) Final saliency map 

5.4 Conclusion 
We have presented a method to recover surfaces, intersection between surfaces, 

and 3-D junctions by applying perceptual grouping rules. The method presented is an 
extension of a 2-D approach proposed earlier by the authors, and uses a non-iterative 
and parameter-free algorithm. The method can handle scenes with any number of ob- 
jects, each having an arbitrary genus number, without any a priori knowledge. In par- 
ticular, an initial guess is not needed. 

The complexity is 0(n3k) in general, where n is the side size of the volume, and 
k is the number of available measurements. Some practical short-cuts can reduce the 
complexity further. The algorithm is highly parallel in nature, and as such can be eas- 
ily implemented on a parallel machine. 
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6 From an Intensity Image to 3-D 
Segmented Descriptions 

Mourad Zerroug and Ramakant Nevatia 
We address the inference of 3-D segmented descriptions of complex objects from 

a single intensity image. Our approach is based on the analysis of the projective prop- 
erties of a small number of generalized cylinder primitives and their relationships in 
the image which make up common man-made objects. Past work on this problem has 
either assumed perfect contours as input or used 2-dimensional shape primitives 
without relating them to 3-D shape. The method we present explicitly uses the 3-di- 
mensionality of the desired descriptions and directly addresses the segmentation 
problem in the presence of contour breaks, markings shadows and occlusion. This 
work has many significant applications including recognition of complex curved ob- 
jects from a single real intensity image. We demonstrate our method on real images. 

6.1  Introduction 
Recovering and representing shape of a complex object is one of the most funda- 

mental tasks in computer vision. A good shape representation is useful not only for 
recognizing an object but also in determining how to manipulate it, how to navigate 
around it and to learn about new objects. 

We believe that a good way to represent a complex object is by decomposing it 
into parts and describing the parts and the relationships between them. If the parts 
are complex, they can be decomposed into simpler parts and described in the same 
way as the larger object. Further, we believe that the parts should be described as vol- 
umetric primitives. Such a representation is very rich, stable and allows us to handle 
occlusion and articulation in a natural way. 

Use of simpler parts to describe more complex objects has a long history in com- 
puter vision [75,83,92]. Biederman has argued that a similar scheme is used by the 
human visual system as well [74]. However, in spite of these theories and the obvious 
advantages of segmented (or part/whole) representations, their use in computer vi- 
sion systems has been limited. We believe that this is due to the difficulty of actually 
computing segmented shape description from real data. The part decomposition hier- 
archy is not given in advance, we must infer it from the observable features in the da- 
ta. Most of the previous work has used range data. In early work [87], Nevatia and 
Binford used perfect contours derived from range data. Pentland [88] used range data 
to segment objects into super-quadric primitives. Surface based segmentation using 
range data has been studied by several researchers [73,79]. 
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(a) intensity image (b) edge image 

Figure 6.1 Sample real image of a compound object. . 

In this paper, we focus on computing segmented volumetric descriptions from a 
single intensity image. This is a task that humans perform effortlessly. It is also im- 
portant for computer vision as a single image can be acquired rather easily, without 
extensive control of illumination or elaborate calibration procedures. Using single in- 
tensity images does pose many problems, however. Lack of direct 3-D measurements 
makes it more difficult to determine discontinuities that may characterize part 
boundaries. Instead, we must work with intensity boundaries which may correspond 
to depth boundaries, but also to markings, shadows, specularities and noise. Further- 
more, object boundaries are unlikely to be complete due to both poor edge localization 
and occlusion. These characteristics make the techniques developed for range data 
and perfect contours [72,77] largely unapplicable to the case of intensity images. De- 
tection of concavities by computing curvature extrema, for example, as used in [72] is 
not possible; it is most likely that such extrema are missing in lines extracted from an 
intensity image. 

Figure 6.1 shows an example. Notice that the boundaries are not all perfect, 
continuous or even part of the outline of the object (most are not in fact). Also, notice 
that the pot is partially occluded by both the spout and the flat object in front which 
also occludes part of the spout. The pot itself partially occludes the handle whose ends 
are not visible. Here, we would like to separate the teapot from the background and 
describe it as consisting of the arrangement of four parts: the conical pot, the lid, the 
spout and the handle. Deciding that there is such an object and with that composition 
is a non-trivial problem. Moreover, we would like to recover the 3-D shape of the ob- 
ject. 

Some previous work has attempted to address part and object segmentation 
from intensity images. Specifically, the work of Rao and Nevatia [90], and Mohan and 
Nevatia [84] has attempted to solve similar problems to those presented in this paper. 
However, these efforts relied largely on heuristic properties of observed contours and 
did not attempt any 3-D recovery (they address a 2-dimensional problem). The meth- 
od of [81], based on a neural network implementation, addresses geon-based descrip- 
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Figure 6.2 Part perception could be driven by context 

tion and recognition from possibly discontinuous boundaries. The boundaries were 
synthetic and the axial descriptions were assumed given. In this paper, we present an 
approach that is more closely connected to rigorous properties of contours of 3-D ob- 
jects to solve the figure/ground and part segmentation problems, and to recover 3-D 
structure of the objects. 

In this work, we have chosen generalized cylinders as primitives for part de- 
scription. The classes of GCs we allow here are the straight homogeneous generalized 
cylinders (SHGCs) and planar right generalized cylinders (PRGCs). SHGCs are ob- 
tained by scaling a planar cross-section along a straight axis curve. PRGCs are ob- 
tained by scaling a planar cross-section along a curved planar axis curve. More 
precisely, two sub-classes of PRGCs are addressed: planar right constant generalized 
cylinders (PRCGCs), characterized by a constant sweep, and circular PRGCs, charac- 
terized by a circular but varying size cross-section. We believe that a combination of 
these classes of GCs can represent well a large fraction of man-made objects. 

Our approach to detecting and describing complex objects is based on the exploi- 
tation of the protective properties of the above classes of parts and of their relation- 
ships. They consist of geometric invariant and quasi-invariant and structural 
properties of the image boundaries of an object (the projection geometry is approxi- 
mated by orthography in this work). We have used a similar approach earlier to ana- 
lyze scenes of objects consisting of single GC primitives. Our work on SHGCs is 
described in [97,98,99]. Our analysis of circular PRGCs is presented in [96,97]; the 
method for recovering them from a single intensity image is submitted separately to 
this conference. Dealing with complex objects introduces many new difficulties due to 
the interactions between parts such as non-visibility of cross-sections, or substantial 
(self) occlusion, and ambiguities inherent to compound objects. For example, a part's 
perception depends not only on the properties of its boundaries but on the surround- 
ing structure as well (which could be thought of as its context [71]). An example is giv- 
en in Figure 6.2 . The middle part (the same set of boundaries) has different 
interpretations in the right and left drawings. 

Our method for object segmentation and description consists of two main levels, 
the part level and the object level. In this approach, the figure-ground discrimination 
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Figure 6.3 Generalized cylinders used as parts in our approach 

and shape description are cooperative rather than sequential processes. The projec- 
tive properties we use also help us recover the 3-D shapes of the parts we detect. 

In this paper, we apply our method to a restricted (but common) class of com- 
pound objects, namely those which consist of two possible types of joints between 
parts: end-to-end and end-to-body. In the former, one part's end is in contact with the 
other part's end and in the latter, one part's end is in contact with the other part's 
body. Our method and some results are described in the following. First, we provide a 
brief overview of our part detection and description system and then describe our 
method for inferring the joints and the compound object. 

6.2 The Part Level 

Most of the methods used in this level have been described elsewhere 
[96,97,98,99]; due to lack of space, we will summarize them instead of giving details. 
The classes of parts addressed in this work (SHGCs and PRGCs) are shown in figure 
Figure 6.3 . 

Two fundamental aspects characterize our method for detecting parts. First, it 
uses geometric projective (orthographic) invariant and quasi-invariant, and structur- 
al, properties of the above classes of GCs. Second it organizes the segmentation and 
description as a hypothesize-verify process. The projective properties provide neces- 
sary conditions that projections of SHGCs and PRGCs must satisfy in the image. They 
also give direct relationships between 3-D shapes and computable image descriptions 
which is useful for recovering volumetric descriptions from a monocular image. Final- 
ly, in using view invariant (and quasi-invariant) properties, the method and the de- 
scriptions it produces do not depend on the particular viewpoint the scene is viewed 
from. 

The method for detecting parts is structured in three sub-levels: the curve level 
and symmetry level and the surface patch level (see figure Figure 6.4 ). The curve lev- 
el consists of forming boundaries from image edges. The next level is concerned with 
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Figure 6.4 Black diagram of the part level 

forming parallel symmetry [93] relationships between the boundaries (parallel sym- 
metries are one of the invariant properties of the primitive parts). The symmetries 
are used to initiate the search for parts. The surface patch level is intended to form 
part descriptions using the boundaries and symmetries formed in the previous levels. 
It consists of a hypothesize-verify process of several steps: detection of local surface 
patches, grouping of local surface patches and verification of parts hypotheses. In the 
detection step, the projective properties are locally applied between pairs of image 
boundaries. Groups of boundaries which (locally) verify the properties are hypothe- 
sized to correspond to portions of parts. In the grouping step, local surface patches 
which are likely to project from the same scene object are merged to form parts hy- 
potheses. The grouping criteria are based on the similarity of their projective descrip- 
tions. For example, for an SHGC, the local surface patches must have the same axis 
projection. The verification step consists of a filter which rules out inconsistent parts 
hypotheses. Consistency is defined in terms of both geometric and structural criteria. 
The geometric criteria consist of enforcing global consistency of the geometry of the 
part with respect to its geometric projective invariants and quasi-invariants. The 
structural criteria consist of enforcing closure and associated junctions at the end of 
a part. They express the fact that the image of a part may have one of several well 
defined closure patterns involving specific junction labeling (that include occlusion 
junctions) [82]. 

This hypothesize-verify nature of the part detection method allows us to handle 
markings, shadows and occlusion. Non-object boundaries (such as surface markings 
and shadows) are unlikely to survive the successive application of the strong projec- 
tive properties. But some regular markings might still survive the verification tests. 

Several enhancements, beyond our previously described work, have been made 
to the part level in order to handle compound objects. First, cross-sections may not be 
visible due to joints between parts. Second, by using a more complete set of projective 
properties (those of joints are described in section 6.3.1), several ambiguities occur 
and need to be addressed. The ambiguities are due to the fact that different 3-D 
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a. initial local surface patch hypotheses 
(146 hypotheses; only a few are shown here 
so as not to clutter the image) 

b. verified parts hypotheses 
(4 hypotheses) 

Figure 6.5 Results of the part level from the image of Figure 6.1 . 

events could produce similar image events. For example, certain junction relation- 
ships between local surface patches could be due to self-occlusion of a single part or 
to a joint between different parts. For lack of space, we omit the details of the im- 
provements to the part level. 

Figure 6.5 shows results of the part level on the image of Figure 6.1 . All four 
verified parts consist of aggregrates of local surface patches (the pot for e.g. consists 
of two due to the dividing marking across its surface). Notice that the complete pot 
has been recovered although its boundary is occluded by both the spout and the flat 
object. This is discussed in section 6.6. In this example spurious hypotheses have been 
rejected at the verification stage. 

6.3 The Object Level 

Since finding complex objects consists of finding their parts and the relation- 
ships (joints) between them, it is also useful to analyze the generic image events be- 
tween parts that allow us to hypothesize those relationships. In this section, we 
discuss the properties of the joints we address in this paper and outline the method 
used to form compound object descriptions. 

6.3.1 Properties of Joints 

There is a variety of ways parts can be joined in a compound object. In this paper, 
we consider two common types of joints: end-to-end and end-to-body (other types of 
joints could easily be incorporated). In the former the parts are joined such that their 
ends are in contact and in the latter such that one part's end is in contact with the 
other part's body (see Figure 6.6 ). The properties of these two types of joints consist 
of the closure patterns of the joined parts and the observed junction relationships be- 
tween the joined parts' boundaries. Analyzing the different possibilities, as relate to 
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end-to-body joints 

end-to-body joint 

Figure 6.6 Examples of joints between parts 

viewpoint for example, is useful for hypothesizing joint relationships between detect- 
ed parts in the image. The properties are discussed below. 

6.3.2 End-to-end joints 

Our model of an end-to-end joint has two possibilities: the two cross-sections 
have the same size (Figure 6.7 .a through c) at their contact or have different sizes 
(Figure 6.7 .d and e). The observed closure patterns of the parts and the image rela- 
tionships between their boundaries depend on both the parts' shape parameters (for 
example sweep derivatives and axis curvature) and the viewing direction (or the ob- 
ject's pose). In the latter case, the intersection curve (the joint curve) may or may not 
be visible in the image and self-occlusion may be observed. Note that the parts contact 
is not necessarily at their cross-sections (the joint curve may not be the cross-section 
curve of either part). The different arrangements for both joint closures and events 
between parts are shown in Figure 6.7 . The abbreviations for the junctions are as fol- 
lows: L-j stands for L-junction, T-j for T-junction and 3-tgt-j for three-tangent junction 
(from the catalog given in [82]). 

In case a., there is no self-occlusion. In case b. there is self-occlusion and the joint 
curve is visible. In case c. there is self-occlusion and the joint curve is not visible. Cas- 
es d. and e. have self-occlusion and differ in the visibility of the joint curve. In the fig- 
ure, examples with L-j L-j closure could be replaced by any of the image closure 
patterns that result from the cross-section facing away from the viewer and the ex- 
amples with 3-tgt-j 3-tgt-j closure could be replaced by any of the image closure pat- 
terns that result from the cross-section facing toward the viewer. 

6.3.3 End-to-body joints 

Our model of end-to-body joint consists of a part's end in contact with another 
part's body. The closure patterns of the joined part and the image relationships be- 
tween the parts depend on whether the joint curve is visible or not. In Figure 6.8 .a, 
the joined part has an L-j L-j closure and T-junctions with the other part's boundaries. 
In Figure 6.8 .b, the joined part has T-j T-j closure where the T-junctions are with the 
other part's boundaries. 
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Figure 6.7 Structural relationships for end-to-end joints. 
Equal size ends (a through c) and different size ends (d and e). 
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\f        part boundaries) / \      part boundaries) 

L-j L-j closure 
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Figure 6.8 Structural relationships for end-to-body joints, 
a. visible joint curve.b. non-visible joint curve 

The above joint models allow for partial occlusion. Effects of occlusion by other 
bodies and of contour breaks are discussed in section 6.4. 

6.3.4 Detection of Compound Objects 

Detection of compound objects consist of hypothesizing joint relationships be- 
tween detected parts. The process is not as direct as simply detecting the joint prop- 
erties given previously. An inherent issue to monocular analysis of 3-D scenes is the 
ambiguity of the projective properties (an example was given in Figure 6.2 ). Thus, 
multiple interpretations are possible from contours alone. Further, since our goal is 
to produce descriptions in terms of GCs and their relationships, we must also produce 
descriptions that are as complete as the image allows to infer. These descriptions 
could be 3-dimensional if sufficient information is available in the image or otherwise 
2-dimensional but corresponding to the projections of the 3-D descriptions. This level 
addresses these issues. It is organized in four steps (see Figure 6.9): detection of 
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Figure 6.9 Block diagram of the object level 
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Figure 6.10 Joint detection allows for partial occlusion, a. a joint is marked 
between parts pi and p2 .b. no joint is marked 

joints, detection of multiple interpretations, completion of description and 3-D shape 
recovery. We discuss these four steps below. 

6.4 Detection of Joints 
The objective of this step is to identify potential joint relationships between hy- 

pothesized parts. Whether there is actual (physical) contact between parts cannot be 
concluded from an image. The detection method consists of finding for each primitive 
the structural relationships of Figure 6.7 and Figure 6.8 with other primitives. Since 
most of those relationships involve T-junctions, these are first detected for all hypoth- 
esized parts (some of them are given from the analysis of the part level). The algo- 
rithm for checking any of the end-to-end or end-to-body joints between a pair of parts 
is fairly simple. Between a pair of parts, it uses an analysis of their contact (the same 
closing curve in case a of Figure 6.7 for e.g, or T-junctions between them), of the clo- 
sure patterns at the joined regions and of an "extent" analysis. The latter, in case d of 
Figure 6.7 for example, consists of verifying that the closing curves of the smaller size 
part are all "inside" the region bounded by the cross-section boundaries of the other 
part's larger size cross-section. The closure constraints of the joined parts are relaxed 
to include occlusion at at most one side of a part's end. For example, the example of 
Figure 6.10 .a is accepted as a joint, whereas the one of Figure 6.10 .6 is not. 
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Figure 6.12 Some ambiguities persist 

6.5  Identification of Multiple Interpretations 

This step attempts to identify cases where more than one 3-D interpretation is 
possible from the given descriptions detected so far. First, the detected joints, provid- 
ing global structure (or context), are used to filter out inconsistent interpretations. 
The joint relationships can be thought of as non-accidental relationships whose pres- 
ence in the image suggests certain labelings of boundaries. The idea is that joints with 
visible joint boundaries (intersection curves) are unlikely to have occurred by chance 
in the image and they should be interpreted as parts ends. As shown in Figure 6.11 , 
the joint boundaries are unlikely to have side (or limb) boundary labeling (an instance 
of this situation was illustrated in Figure 6.2 .b). Therefore, while the single part of 
Figure 6.2 , taken by itself could be interpreted as either an SHGC or a PRGC, when 
considered in the joint of Figure 6.2 .b, it can only be interpreted as an SHGC part. 

Remaining ambiguities are those for which certain image boundaries have dif- 
ferent parts and joints interpretations (for e.g boundaries which could be interpreted 
as either cross-section or side boundaries). Figure 6.12 gives an example where two 
interpretations are possible: a joint of type end-to-end between two parts or two joints 
of type end-to-end between three parts. Therefore, conflicting parts hypotheses (two 
or three in this case) imply conflicting joints hypotheses (one or two joints for the same 
case). 

The result at this stage of the method is a set of possible interpretations each of 
which is represented a set of graphs (one for each compound object) whose nodes are 
the parts and whose arcs are the joints between the parts. The arcs are labeled par- 
tially by the type of joints they represent. This graph is only a representation of the 
detected objects. Its purpose is not the same as the one in the method of [90] where 
the graph was used to segment objects made up of ribbons. Although multiple inter- 
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Figure 6.13 Resulting graphical representation from the hypothesized parts of 
Figure 6.5 

pretations are a feature of our system, in the examples given in this paper, only one 
interpretation is found for each image. Figure 6.13 shows the graph constructed for 
the parts of Figure 6.5 . 

6.6  Completion of Descriptions 
A complete part description is one which gives its cross-section and the corre- 

spondences between its sides (projections of points on the same cross-section in 3-D), 
both of which give the projection of the 3-D description. Having these two elements is 
essential for constraining the 3-D shape of the part [93,94,95,96,97,98,99]. Some parts 
may already have complete projective descriptions (whole body and cross-section vis- 
ible). Depending on the arrangements of parts, (self) occlusion and image contrast, 
some parts may miss portions of their body or their cross-sections. Two types of com- 
pletions for these parts are possible: in the image and after 3-D shape is recovered. 

For SHGCs with visible cross-section and partially occluded bodies, the descrip- 
tion can be (uniquely) completed using the partial part's (projective) description 
[98,99]. For other parts or when the cross-section is not visible, the method attempts 
first to infer missing shape information, such as non-(directly)-visible cross-sections 
and missing side-boundaries, to the extent possible from the joint relationships be- 
tween parts. For this, it is useful to classify the cut of each part as to whether it is 
likely to be planar or even cross-sectional. Having this classification also helps select 
the appropriate 3-D recovery methods [95]. To do this, we can use the geometric prop- 
erties of SHGCs and PRGCs. A summary of these properties (under orthographic pro- 
jection) is given below. Their use is in the reverse sense; i.e. given the observed (non- 
accidental) properties, we hypothesize that the part has the corresponding type of cut. 
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Figure 6.14 Completion of descriptions: inferring parts cross-sections 

• a cross-section cut of an SHGC at both ends produces linearly parallel symmet- 
ric1 boundaries in the image [93] 

• a planar cut of an LSHGC at both ends produces line-convergent* symmetric 
boundaries in the image [95] 

• a cross-sectional cut of a circular PRGC (and circular PRCGC) at any end pro- 
duces an ellipse whose minor axis is parallel to the tangent to the projection of 
the axis [96] 

Two types of cross-section inference are possible. One is through the use of the 
end-to-end joints with same-size ends (cases a, b and c of Figure 6.7 ). For example, 
in Figure 6.14 .a, the top part has a visible cross-section which can be "inherited" by 
the bottom part. This propagation can be carried through a sequence of joints. In case 
this is not possible, the other type of inference consists of inferring circular cross-sec- 
tions for primitives which could consistently be described as such. This includes 
SHGCs with bilateral symmetric side boundaries [86] and circular PRGCs satisfying 
the third property above and having elliptic cross-sectional arcs as the partially visi- 
ble cross-section. Figure 6.14 .b gives an example. 

For parts which cannot be completed in the image and for which partial 3-D 
shape can be recovered, the completion is done in 3-D and consists of filling in the 
gaps in the 3-D axis by quadratic curves (in its recovered plane) and the gaps in the 
sweep function by piecewise linear sweeps. 

The projective completion of the pot of Figure 6.13 (main part) has been done 
using only the SHGC description. The completion of the spout (right PRGC) is done 
after 3-D shape is recovered (see Figure 6.15 ). The handle (left PRGC) could not be 
completed since its cross-sections and joints are not visible due to occlusion. 

Parallel symmetry is a generalization of parallelism of straight lines to curved 
ones. It is linear if the curves are scaled and translated version of each other [95]. 
Line-convergence is a form of symmetry whereby tangent lines at symmetric 
points of two curves intersect along a line[95]. It can be thought of as the general- 
ization of point incidence to line incidence. 
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Figure 6.15 Recovered 3-D volumetric descriptions for the descriptions of 
Figure 6.13 . 

6.7 3-D Shape Recovery 
At this stage of the system, possible interpretations of image boundaries in 

terms of compound objects are identified. Recovering 3-D shape of a compound object 
consists of recovering the intrinsic 3-D description of each of its parts; i.e. its 3-D 
cross-section, its 3-D axis and the sweep function. 3-D descriptions from monocular 
images of SHGCs, PRCGCs and circular PRGCs have been addressed by the authors 
and others in [76,80,85,89,93,98,97], [94] and [96] respectively. Those method are 
based on using the properties of a primitive to generate constraints on its 3-D shape. 
For compound objects, a complete 3-D recovery method should normally use, besides 
such properties for each part, constraints on the interaction between parts. For exam- 
ple, well defined differential geometric relationships hold between the orientations of 
two surfaces and their intersection curve [78]. We have not attempted to address this 
problem in our work though (this is a topic in its own right). 

We have instead used the methods described in [93,98,97,96] to recover 3-D 
shape of each part as though it were isolated. Figure 6.15 shows the recovered volu- 
metric descriptions of the parts of the object in Figure 6.13 , using different poses in 
3-D (the descriptions are shown in terms of cross-sections and meridians of the recov- 
ered 3-D GCs). Notice the 3-D completed spout. The handle could not be recovered 
since its cross-sections are not (even partially) visible (its description remains protec- 
tive) 

Figure 6.16 shows results of the method on another image. Both mugs consist 
of a main body (SHGC) and a handle (PRGC). Notice the markings on the surface of 
the cup in the front and outside the objects. The image also exhibits occlusion between 
independent objects. There were 177 initial local surface patch hypotheses ( 
Figure 6.16 .c) and two objects, each made up of two parts joined by two joints, are ob- 
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Figure 6.16 Additional results of the method 

tained. The joints labeling and the obtained graphical representations are shown in 
Figure 6.16 .d. The recovered 3-D parts are shown in Figure 6.16 .e for different ori- 
entations. The 3-D shape of the handle of the front mug could not be recovered be- 
cause its cross-sections are not visible. At this stage, the 3-D parts and their 
relationships are completely identified. 

6.8 Discussion and Conclusion 
There are a number of issues not addressed in this paper. Among them is han- 

dling parts with multiple surface patches such as occurs with polyhedral cross-section 
parts. This issue has been partially resolved in a previous work in the case of concave 
cross-section SHGCs [98,99]. To handle this type of parts requires a further step 
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whereby surface patches generated from different portions of the cross-section are 
identified and merged. 

In summary, the proposed method makes use of the projective properties of a 
small number of primitive GCs and their relationships in order to recover segmented 
3-D descriptions independently of the viewing direction and in the presence of partial 
occlusion, surface markings, shadows and contour breaks. 

The results of this work have several applications. The descriptions obtained by 
our system (either the 3-D intrinsic elements of a GC or their projective descriptions) 
can be used to provide powerful, view-insensitive, indexing keys to large databases of 
object models for object recognition (such as in [87] for example). In manipulation, the 
3-D descriptions can be used to plan for the grasp and pre-shape the hand. In naviga- 
tion, they can be used to select appropriate paths to avoid obstacles, for example, and 
in learning, the symbolic descriptions can be used to analyze differences and similar- 
ities between newly recovered objects and previously recovered ones. 
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7 Extraction of Groups for 
Recognition 

Parag Havaldar, Gerard Medioni and Fridtjof Stein 
We address the problem of recognition of generic objects from a single intensity 

image. This precludes the use of purely geometric methods which assume that models 
are geometrically and precisely designed. Instead, we propose to use descriptions in 
terms of features and their qualitative geometric relationships. We propose to detect 
groups using perceptual organization criteria such as proximity, symmetry, parallel- 
ism, and closure. The detection of these features is performed in an efficient way using 
proximity indexing. Since many groups are created, we also perform selection of rel- 
evant groups by organizing them into sets of similar perceptual content. Finally we 
present an initial implementation of a recognition system using these sets as primi- 
tives. It is an efficient colored graph matching algorithm using the adjacency matrix 
representation of a graph. Using indexing, we retrieve matching hypotheses, which 
are verified against each other with respect to topological constraints. Groups of con- 
sistent hypotheses represent detected model instances in a scene. The complete sys- 
tem is illustrated on real images. We also discuss further extensions. 

7.1  Introduction 
Most object recognition systems today address the problem of finding the loca- 

tion and orientation of an exactly known rigid object in a scene. Grimson's book [109] 
gives a lucid treatment for the geometric constraints used in these approaches. The 
presence of a model is inferred by the verification that such a model could indeed pro- 
duce some of the observed data under an appropriate geometric transform. However, 
this approach cannot be extended to more general scenarios containing objects which 
may be very similar while being geometrically different. Consider for instance two dif- 
ferent airplanes which have similar features but different geometries. In other words, 
generic recognition obviates the use of methods based purely on the exact geometric 
structure of the object. It is clear that the only way to solve this difficult problem is to 
reason about parts and their arrangements. This argument is supported by Bieder- 
man's theory [101], which states the sufficiency of a limited number of volumetric 
components (or geons) for the task of recognition. Recovery of parts and their arrange- 
ments can help fast recognition of objects even if they are occluded, novel, rotated in 
depth or extensively degraded. 

We therefore have three problems to solve: the extraction of primitives, the de- 
scription of scenes in terms of these primitives and the actual recognition of objects.In 
this paper we propose the use of perceptual grouping to approach the problem of ge- 
neric recognition. Use of perceptual groups is not new, as it was proposed in the 1970s 
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but was not very successful because of the failure to obtain reliable primitives in the 
first place. Using groups explicitly for recognition was first launched by the classic 
work of L. G. Roberts [118]. Brooks [103]developed an image understanding system 
called ACRONYM which uses a restricted class of generalized cylinders (GC) for de- 
scriptions of model and scene objects. Lowe's SCERPO[113] system takes a bottom-up 
approach to object-centered recognition. Rothwell in [120] explains the need for com- 
puting local invariants and for tying them together to form complete object descrip- 
tors as opposed to computing a single global descriptor. 

In section 7.2 we describe the feature hierarchy computed. As explained in some 
of our previous work [124], such groups serve as an intermediate level representation 
of the data, in a hierarchical fashion, and can be used to retrieve likely candidate ob- 
jects from a library. Some of the groups extracted may not yield any natural descrip- 
tions. Hence, in section 7.3, we perform a selection step by organizing the groups into 
sets which have similar "perceptual" content making use of junctions to reason about 
relevant sets. In section 7.4, we give an outline of our recognition system which uses 
these sets for recognition. As models we use multiple views of an object. Results are 
shown in section 7.5. 

7.2  Going from Edgels to Groups 

In our previous work [122], the super segment was introduced in two or three 
dimensions as a feature to represent a piece of a curve. It is based on the assumption 
that the underlying structure embodies continuity. Here, we propose to go to higher 
level groups which take into account other grouping criteria besides co-curvilinearity, 
such as parallelism, closure, and symmetry. In computer vision, many authors have 
focused on computing perceptual groups (see e.g. [110,113,114,111,119,121,127]). 
Most of these algorithms tackle the detection of all perceptual groups by either as- 
suming perfect data, or by applying exhaustive search. Our algorithms try to compro- 
mise: we do not assume perfect data and therefore we find most (but not necessarily 
all) perceptual groups. On the other hand, we do this in an efficient way by using prox- 
imity indexing.We now explain the steps involved in going from an image to a high 
level representation of it in terms of "perceptual" groups.This chain of processing is 
sketched in Figure 7.1 .The following sections focus on the details of the perceptual 
hierarchy. 

7.2.1 Preprocessing 

In the preprocessing stage we reduce the amount of data: starting from images 
we first detect edges in the image (using the Canny edge detector [104]). We then com- 
pute curves, which consist of linked edgels. In the local grouping stage we generate 
many line segments based on multiple linear approximations with different fitting 
tolerances. For each approximation tolerance, we perform a vertex collapse and com- 
pute super segments and parallels. By creating a large set of features at this point we 
gain robustness in our further groups, and we significantly reduce the unreliability of 
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Figure 7.1 Feature Hierarchy 

the preprocessing. The perceptual grouping stage no longer distinguishes between 
features of different fitting tolerances. Below in Figure 7.2 we show an example scene 
and the detected edges. Note that although this is the same image as the one used in 
Zerroug and Nevatia [128], we follow a very different line of reasoning. In particular, 
we make no assumptions about the kind of objects we deal with. 
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7.2.2 Super Segments 

Since we want to handle occlusion, we do not expect to obtain complete bound- 
aries in our images, but only portions of them. Grouping a fixed number of adjacent 
segments provides us with one of our basic features, the super segment. The compu- 
tation of super segments is the same as described in [122]. Connected linear segments 
form chains of adjacent segments. We generate super segments from cardinalities 3 
to 6. 

7.2.3 Parallels 

Segments which are parallel within a certain tolerance (5=20°) are grouped as 
parallels. For each linear segment, the possible candidate parallels are retrieved and 
verified with respect to aspect ratio and overlap. Segment pairs which meet theses 
constraints generate parallels. Using proximity indexing, we are guaranteed to find 
parallels which are at most 5/2 apart and we get some parallels with angles between 
5/2 and 5. 

7.2.4 Symmetries 

Symmetries have been used by various authors [114,127]. We detect two specific 
symmetries here as features of an object. 

Parallel symmetries are retrieved by finding proximate parallels. We do not use 
the super segment approach, because we would depend on the cardinality of the super 
segments. By using the parallels as the building blocks, we can use proximity index- 
ing to find parallels which share the same vertices. Examples are shown in Figure 7.3 
(left). Skew symmetry was first proposed by Kanade [110] and its extraction was done 
by Ponce [111] and Saint-Marc and Medioni [121] but these methods are quite sensi- 
tive to noise. We are interested in symmetries between line segments. Our approach 
is not exhaustive. We use supersegments to detect skew symmetries. Two super seg- 
ments are skew symmetric, if they satisfy the following: (a) the difference between the 
corresponding angles must be smaller than 26max, and (b) the symmetry axis has to 
be straight. An example is given in Figure 7.3 (middle). 
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Figure 7.3 Examples of groups - parallel symmetries (left), skew 
symmetries (middle) and U-shapes (right) 

7.2.5 Closures 

Lowe [113] states: There is a tendency for curves to be completed so that they form 
enclosed regions. Based on this statement, Mohan and Nevatia [114] developed the 
idea to close symmetries at their ends to obtain so called ribbons, which form enclosed 
regions. They use these ribbons to segment images. We want to use closures as fea- 
tures. At the moment we compute closures from U-Shapes, from closed curves and 
from skewed symmetries. A parallel which is closed at one side by a linear segment is 
a strong indication that a rectangular structure is at hand where one side could not 
be detected. We therefore assume that we found a closed contour. U-Shapes can be 
found by indexing over the vertex pairs of parallels and trying to find a segment which 
forms a U-Shape with the parallel.The obvious form of a closure occurs if we have a 
closed curve. To detect a closure based on a curve we allow the gap between start and 
end of the curve to be 5% of the arc length of the curve. We adopt the idea that a seg- 
mentation into parts should be done at negative minima of curvature from Rom and 
Medioni [119]. Such "a part" is used in our system as a closure. Whenever we encoun- 
ter a sign change of consecutive angles, we "break" the symmetry at this point. Apply- 
ing this step iteratively, we generate alternating convex and concave parts. We use 
the convex parts to create closures. Examples of closures can be seen in Figure 7.3 
(right). 

7.2.6 Efficient Implementation through Proximity Indexing 

Proximity indexing was used to efficiently compute the feature hierarchy de- 
scribed in the previous section. Proximity indexing issues play an important role 
when we wish to find features with similar attribute values. Traditional search meth- 
ods which compare every possible pair are very time consuming. Recent vision sys- 
tems have used indexing. A major problem with indexing is deciding the length of the 
quantization intervals. Values which are close, may fall in different quantization in- 
tervals as shown in Figure 7.4 . Two features match only in the case when they fall 
into the same interval, which may not always be so. Flynn and Jain [108] point out, 
it is essential to have an indexing scheme that preserves proximity in the key values. 
So far, two strategies based on indexing have been used to deal with this problem: 
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Figure 7.4 The indexing problem 
large bucket size and searching of neighboring bins. While large bucket size is based 
on the hope that "less values will fall into the incorrect bin", the search of neighboring 
bins has an exponential complexity with respect to the number of false value matches. 

We propose an alternative approach: We encode every feature twice and use in- 
dexing on every value separately. Every value is quantized twice. The stored features 
for both intervals are retrieved and combined into one set. For all values we get such 
a feature set. The intersection of all these sets results in the features which are close 
to/". Such an interlaced quantization is guaranteed to preserve proximity while index- 
ing 

7.3  Selection of Relevant Groups 
The groups extracted from images not only contain perceptually salient fea- 

tures, but also contain many features which do not yield any natural descriptions. 
Such groups come about when the segments and supersegments give rise to features 
(symmetries, U-shapes etc.) which are geometrically correct, but are less obvious be- 
cause of other competing groups. The undesired groups also increase the complexity 
of the representation and matching process (see section 7.4). Selecting relevant 
groups may be helped by purely local heuristics, such as the skewness or orientation 
of overlapping groups. We prefer to make use of more global constraints. We first ag- 
gregate the groups into different sets such that each set contains groups which are 
perceptually similar. Note that each set may be perceptually correct or incorrect. To 
pick out relevant groups we make use of junctions and reason at the level of the above 
sets. 

The main advantage of this is that if a certain set of features can be verified as 
not coming from any surface of an object in the image, then the entire set may be dis- 
carded. Reasoning at such a surface patch level provides a stronger grip on the entire 
selection process. We now explain the aggregation and selection processes. 

7.3.1 Aggregation of Groups into Sets: 

We use the properties of the axis to organize the groups into various sets, the ob- 
jective being that each set should perceptually provide the same information. Groups 
which are "similar" have similar axes orientation and their axes are spatially close to- 
gether. 

1) We first aggregate the groups having similar axes orientations into different 
sets. The groups in each set may still be spatially located at different positions. 
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2) Next we choose each set and further partition it depending upon spatial neigh- 
borhoods. This is done by constructing a graph whose nodes represent groups 
and edges represent spatial closeness. The connected components of the graph 
give sets of groups having similar orientation and position 

3) Lastly we look at the segments of the groups in each set and further separate 
out groups which vary markedly in their average distance to the axis. 

In Figure 7.5 we show examples of four such group sets. Each image displays one 
group in each set. Below we discuss how to select valid sets. 

7.3.2 Selection of sets 

We first compute all the junctions in the image and use them to decide the valid- 
ity of the sets. The junctions in the image may be because of a variety of reasons, 
mainly due to occlusion, surface markings or surface-orientation discontinuities on 
the object. We are not trying to classify the junctions, but rather use them as a tool 
for verification of the sets. Some computed junctions are shown in Figure 7.5 (b). 
Next we break the segments of the groups in each set into two subsets, each subset 
containing segments on either side of the axes. If there exist junctions which connect 
the above mentioned segment subsets, such that one junction connects the segments 
of one side of the set to another set and a second junction connects the segments of the 
other side of the same set to a third set then we label this set as invalid. In Figure 7.5 
(c) we show some of the valid and invalid groups in the set as a result of this reasoning 
for the junctions shown. It can be seen that the groups in set 4 are invalid. Two junc- 
tions which the segments of this group set form and meet the above reasoning are 
junctions 3 and 4. Another example of an invalid set comes about because of junctions 
6 and 7. On the other hand junctions 1 and 2 are formed between segments of group 
sets 1 and 2 shown in Figure 7.5 (a). It can be seen that in this case the segments of 
the junctions are shared between two sets and not three. 

At this stage we have the groups organized into sets, each set contains groups 
which as perceptually similar and can now be used as tokens for recognition. Note 
that each set yields a multiple representation of a "part" in the form of many groups. 
We can encode the spatial relationships of these sets to form a graph to describe the 
object. Note that although the percentage of the irrelevant groups has decreased, they 
may not necessarily be totally eliminated. However, recognition is achieved by hy- 
potheses voting, which tends to minimize the effect of irrelevant groups in the scene. 

7.4 Representation and Matching 
Given a set of features and the topological relationships between them, a natural 

representation of this structure is a graph. For basic graph related definitions used 
here and more on graph theory see [116],[100],[105]. For our topological graph the 
vertices are the shapes or enclosures of sets of groups and the edges represent the to- 
pological relationship between them. We compute the enclosures or convex approxi- 
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(a) Examples of groupings organized into sets of similar perceptual 
content. Four sets are shown. Each image shows one group of each set. 

M   f 

(b) Examples of some junc-   (c) Examples of valid and invalid groups 
tions detected in image for T-junctions shown above 

Figure 7.5 Selection of Sets 

mations (CAs) of the set. This gives us the geometric shape of the set which enables 
easy computation of the topological and spatial relationships. In the current imple- 
mentation we label the edges with only two labels: adjacency and inclusion. The di- 
rection of an edge depends on its label. When an edge is labeled with "inclusion", the 
edge is directed from the inner set to the outer set. When an edge is labeled with "ad- 
jacency", the edge is undirected. In Figure 6.6 , we show an example of a scene of four 
CAs and the corresponding graph. 

In computer vision, graph matching is widely used (see e.g. [115], [107], [114], 
[117]). In the worst case, the subgraph isomorphism problem is NP-complete. There- 
fore several heuristics were developed to improve the average complexity for specific 
cases (see e.g. [105]). Despite all the previous research, we could not find any algo- 
rithm which would perform with reasonable complexity for graphs consisting of a 
hundred vertices or more. Furthermore, we are unaware of theoretical results on sub- 
graph isomorphism in colored graphs. Our goal is to find large subgraph isomor- 
phisms, which are likely to represent detected models in a scene. We believe that we 
can use structural indexing to find corresponding subgraphs 

We need to decide upon structural tokens to perform indexing. Using the sets of 
groups only would be very expensive. In our implementation the "color" of the graph 
lies in relationships between the sets, i.e. the edges in the graph. We make use of the 
information of the groups in the sets to separate out consistent hypotheses after the can- 
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= adjacent: Symbol a 
► inside-of: Symbol i 
*  inside-of and adjacenk^SyUbjLb. 

Table 1: 

C C C c 
l 2 3 4 

c a 

^ mbi Lb_ 

Figure 6.6 Example of Graph 

didate hypotheses have been detected. The idea is to find all paths of length k (corre- 
sponding to k+1 connected sets) and to cluster these to find the largest consistent 
group of such paths. In a complete connected graph consisting of I V\=m vertices, 
there are ra-1 outgoing edges at every vertex (\E\ = (IVI -1)!). Therefore the number 
of paths of length k is m(m-l)(m-2)...(m-k). This corresponds to an upper bound of 
0( IVI *+1) in the number of paths. A more realistic assumption is that there are only 
a constant number of outgoing edges at every vertex. This results in an upper bound 
of 0( IVI *) in the number of paths. On one hand we are interested in using long paths 
to be as discriminative as possible, on the other hand the number of possible paths in 
a graph grows exponentially with k. Another consideration for k is the size of the cor- 
responding subgraphs. Choosing a large k can result in not detecting a subgraph 
which has less vertices than k. In our implementation, we use the path length k=2. 
This allows us to exploit the discriminative power of three connected sets. At the same 
time the number of paths has the worst case complexity of 0( IVI2) (assuming a con- 
stant number of outgoing edges at every vertex). The clustering of corresponding 
paths enables us to find the corresponding subgraphs with more than 3 vertices. 

The computation of the paths is straightforward. The graph can be represented 
by its adjacency matrix.The representation of an object works as illustrated in 
Figure 7.6 . Every view of a model is processed in the following way: 

1) The feature hierarchy is computed. 

2) The enclosures of the sets are used to create the topological graph. 

3) All paths (in our implementation of length 2) are computed. 

4) Each path is encoded 

5) Each path is stored in a data base. 

To encode a path we take the code of all pairs of sets. We use the following at- 
tributes to encode a pair of sets: 

• the label of the connecting edge, 
• when the two sets are adjacent, the percentage of common boundary, 
• when the two sets are intersecting, the percentage of area intersection. 
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view of model database   hypotheses 

Pk" nPi] 

Pl-> 

database    Code(Pk) 

Figure 7.6 Representation of Model and Scene 

All numerical values are quantized in a coarse way to allow significant devia- 
tions due to viewpoint change and noise. The typical quantization in our implemen- 
tation for all numerical values is 20%. 

The generation of the hypotheses proceeds in a similar way (see Figure 7.6 ) 

1) we perform steps 1 through 4 above, then we 

2) retrieve from the data base the stored model paths which have the equivalent 
code. 

The retrieved hypotheses are equivalent to subgraph isomorphisms of path 
length 2 between the different model-views and the scene. In the verification step we 
cluster the hypotheses in order to get larger corresponding subgraphs which are likely 
to represent an instance of a model in a scene. Two hypotheses are consistent when 
the following rules apply: 

1) They share at least one corresponding set pair. 

2) No contradiction occurs. That means that the combined number of vertices and 
edges of the two paths in the model-view have to be the same as in the scene. 

3) Connectivity has to be preserved. When two vertices are connected in one sub- 
graph they have to be connected with the same label in the corresponding sub- 
graph. 

In this case, the combined hypotheses form a new hypothesis. These clusters 
grow iteratively until no further consistent hypotheses pairs can be found. 

7.4.1 Analysis 

What would have happened if we would have taken shorter or longer paths as 
basic matching primitives? Given k as the path length. Then ck is the number of CA 
pairs in a path consisting of k+1 vertices, with c=(k+l)k/2. In section 7.4 we talked 
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about the attributes which we use to encode a pair of enclosures of sets: the label of 
the connecting edge, the percentage of common boundary, and the percentage of area 
intersection. The label can have four different values: nil, adjacent, inside, or adjacent 
and inside. We further mentioned that we quantize the last two values in five quan- 
tizations of 20% each. That means we have a=4*5*5=100 different codes to encode a 
pair of sets. Therefore the number of available path codes of length k isDk=a°k=a(k+1)k/ 

2 

D, is a measure for the discriminative power of an encoding scheme. The larger 
D , the larger the code alphabet, the more discriminative power a feature has.The 
trade-off lies in the generation of the matching primitives versus the generation of the 
hypotheses with respect to the discriminative power. Taking a short path length re- 
sults in a low number of paths to generate. For k=l, the number of paths is 0( IVI). 
On the other hand the discriminative power of these paths is lower. For k=l, 
D =1002=10000. Because the number of paths decreased by one order of magnitude 
and the discriminative power decreased by two orders of magnitude, the number of 
generated hypotheses h is in general larger than in our example. Because the cluster- 
ing of the hypotheses has a complexity of 0(h2), the matching and verification for k=l 
is slower than for k=2. Taking a long path length results in a large number of paths. 
For example, for k=4, the number of paths is 0( IVI4), and Z>4=10010=1020. The num- 
ber of generated hypotheses will be minimal due to such a high discriminative power, 
and therefore the final clustering will be very fast. But computing 0( IVI4) paths re- 
quires a high space complexity which may be prohibitive. The right way to proceed is 
to increase the value a. This can be done by improving the encoding scheme. 

7.5 Results 
In Figure 7.7 (top) we show an example of the performance of our current sys- 

tem. The model used for this was one view of an instance of a duck. In the scene how- 
ever, we had a similar view of another instance of the duck, which was partially 
occluded. The model gave rise to 21 high level groups resulting in 9 sets out of which 
2 were discarded by the reasoning presented in Section 7.3. Among the 7 valid sets 
contained 6 relevant and 1 was irrelevant. The entire hierarchy took about 13 seconds 
to compute for the model. The scene gave rise to 47 groups which were organized into 
21 sets out of which 5 sets could be discarded. The remaining 16 sets contained 12 rel- 
evant sets (out of which 5 were of the duck, and 7 were of the other objects). The sets 
were used to compute a graph. One of the matched hypothesis is shown. The entire 
hierarchy took about 2 minutes to compute. 

In Figure 7.7 (bottom) we show another example. In this scene the duck was 
slightly rotated and from a different viewpoint. The scene resulted in 88 curves, which 
gave rise to 129 groups. These were organized into 19 sets out of which 4 sets could 
be discarded. The entire hierarchy took about 6 minutes to compute. 
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Example 1: (left) images of scene and model - duck in scene is different from that 
in model and partially occluded, (middle) edges of scene and model, (right) exam- 
ple of matched hypotheses. 

irwlno trjM nl 2 

Grouping of sot 1 

ing of se 

ing of set 2 

Example 2: (left) images of scene and model - duck in scene is different from duck 
in model and partially rotated, (middle) edges of scene and model, (right) example 
of matched hypotheses. 

Figure 7.7 Recognition examples (1) -top and (2) - bottom 
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7.6 Conclusion 
We have developed an approach to use perceptual organization for the purpose 

of generic object recognition, and show some promising results. Our perceptual group- 
ing is purely data driven. We try to resolve ambiguities and try to discard groups 
which not necessarily yield any physical interpretation.Our system emphasizes qual- 
itative rather than quantitative tokens and tries to achieve recognition using spatial 
correspondences of these tokens. By using multiple representations for each group, we 
can deal fairly well with occlusion and scale.By using a set of different views to rep- 
resent a model we can deal with incomplete model descriptions. 

Our future work aims at taking care of cases when the system does not find cor- 
responding high level groups (e.g. due to heavy occlusion)? We want to focus on this 
point by developing a multilevel matching, which allows the system to "fall back" on 
lower level features in order to find correspondences. We would like to extend the in- 
dexing idea directly to the perceptual group sets, rather then by using their approxi- 
mations. There are several other features and group strategies which we ignore so far: 
continuation, texture, saliency etc. Including these features would enrich the descrip- 
tive and discriminative power of our feature hierarchy. 

Our work and the corresponding results in this paper should demonstrate the 
viability of this approach. 
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8 Pose Estimation of Multi-Part 
Curved Objects 

Mourad Zerroug and Ramakant Nevatia 

8.1  Introduction 
Recognizing 3-D objects from a 2-D image is important for many visual tasks. 

Part of this problem is the estimation of the 3-D pose of the viewed objects. Alignment, 
introduced by [134], is a very attractive method since it is simple and efficient. Most 
objects demonstrated under the alignment technique are those for which low-level im- 
age features can be identified and matched with model features. These include 
polyhedra and objects with sharp corners or distinguished lines. Dealing with com- 
plex, curved, objects is more difficult because no such low-level features may be iden- 
tifiable. This is due to the possible view-dependency of the outlines which may vary 
wildly with changes in viewpoint and thus are hard to match with object models. 

Few efforts have addressed the pose estimation of curved objects. Kriegman and 
Ponce [136] use a complex method based on elimination theory which finds the pose 
by minimizing an objective function which is the distance between the viewed silhou- 
ettes and the projection of an algebraic surface representation of object models. The 
method of [131] addresses surfaces of revolution, a somewhat restriced class. A recent 
method of [139] uses invariants based on the cross-ratio along surfaces of revolution 
having bi-tangents. The above methods have been demonstrated on relatively simple, 
though curved, objects. 

In this paper, we show that alignment-like techniques can still be used for a 
large class of complex, curved, multi-part objects provided adequate features and rep- 
resentations are used. More specifically, we demonstrate that high-level descriptions, 
based on a part-based formalism using generalized cylinders, provide means to estab- 
lish quasi-invariant correspondences (meaning that they are almost exact over al- 
most all viewpoints) between image and model shapes. These correspondences are in 
terms of powerful intrinsic quantitative shape attributes such as the axis, the scaling 
function and the cross-section of a part. The idea is that although the outlines may be 
viewpoint dependent, or may not have distinguished points, the derived shape de- 
scriptions in terms of the above powerful attributes (and their combinations) provide 
viewpoint independent entities which can be put into correspondence with models so 
represented. We believe this to be an important demonstration of the usefulness of 
high-level, part-based, descriptions in extending the classes of shapes which can be 
handled. The classes of shapes demonstrated here currently include arrangements of 
SHGCs {straight homogeneous generalized cylinders), a straight-axis primitive, and 
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PRGCs (planar right generalized cylinders), a curved (planar) axis primitive, a fairly 
large class of man-made objects (an image of such shapes is shown in Figure 8.1). 

Although high-level descriptions have been used in the past in object recogni- 
tion, they have been used largely for qualitative image-model matching 
[129,132,140]; we believe their use for quantitative pose estimation to be novel in this 
work. The method described here is inspired by the results of [146] which demonstrat- 
ed that GC part-based descriptions can be obtained even in the presence of adverse 
imaging effects such as clutter and occlusion. Our approach is to use these descrip- 
tions to recognize the viewed objects and estimate their 3-D pose. 

For lack of space, we will not describe the matching techniques in great detail. 
Rather, we emphasize the discussion on the use of the high-level part-based descrip- 
tions to establish image-model correspondences for relatively complex, curved, struc- 
tured objects and demonstrate the application of alignment-like methods on those 
descriptions. However, we would like to emphasize that our method does not assume 
that model objects with which the viewed objects should be matched are selected by 
some previous process. Rather, it automatically finds the matching objects from the 
database and computes their pose. 

In this paper, we discuss the computation of the scaled orthographic pose (which 
is reasonable for each object relatively far from the camera). The results can be used 
as initial estimates for the computation of the perspective pose as discussed in [134]. 

We organize the paper as follows. In section 8.2, we describe the representations 
used and the classes of objects addressed in this paper. In section 8.3, we discuss the 
use of these descriptions to solve the pose estimation of structured objects, and dem- 
onstrate the method on several real images of relatively complex objects. We conclude 
in section 8.4. 

8.2 Representations 
In this section, we describe the descriptions used to represent image and model 

objects. 

8.2.1 Image Objects 

Image objects are extracted using the method of [146]. This latter produces a 
graph representation of each viewed object without any prior knowledge of its identi- 
ty. Rather, it uses purely generic tools to segment objects from the background and 
decompose their shapes into constituent generalized cylinder parts. A detailed de- 
scription of the method is given by the authors of [145,146]. 

An important aspect of the results of that method is that it produces projective 
shape descriptions in that, although 2-D, the image characterizations of parts (such 
as their image axes and sweeps) correspond to the projection of the 3-D descriptions. 
This is very useful and, as we will show in section 8.3, allows the establishment of im- 
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age-model correspondences for objects for which aligment-like techniques haven't 
been demonstrated yet. 

An example of descriptions is shown in Figure 8.1. Each detected object is de- 
scribed as a graph where nodes are parts and arcs labeled joint relationships between 
parts. For each part, the description consists of the following: 

• a label giving its type (SHGC or PRGC) 

• a label giving the type of sweep. For an SHGC, this label could be cylinder, cone 
or non-linear (the former two indicate a linear sweep while the latter indicates 
a non-linear one). For a PRGC, ir could be constant or non-constant. 

• the image of the cross-sections if visible. For an SHGC, the "top" cross-section 
is assumed visible. 

• the image of the axis. In the case of SHGCs, for a cylinder, this consists of the 
direction of the axis, for a cone it consists of the apex and for a non-linear SHGC 
of a line. For a PRGC, this consists of a list of points which are in practice an 
excellent approximation of the projection of the 3-D axis [144]. 

• the pair-wise correspondences between the side boundaries which correspond 
to the projections of co-cross-sectional points in 3-D. 

• for SHGCs, the description addtionally includes a list of scaling ratios {Rt; i = 
l..n) giving the amount of scaling of the cross-section at each position along the 
axis with respect to the top cross-section. The Rt values are invariant under 
scaled orthographic projection (quasi-invariant under perspective).. 

Figure 8.1 Descriptions (2-D) extracted from an image. 
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8.2.2 Model Objects 

Each model object O^ is represented as a graph G^ = (QM> JM) where QM = {g^1, 
.. QM } is the set of its GC parts and J^ the set of labeled joints between the parts. 
Each part is represented by its 3-D intrinsic GC attributes; i.e. the cross-section, the 
axis ^d^ the scaling function all in a 3-D object-centered coordinate system Sq = 
(Oq, ij, k). Figure 8.2 illustrates this system for SHGCs and PRGCs. More specifical- 
ly, the attribute representation consists of the following elements: 

• the cross-section XM represented as a list of points; X^ = Ipt) 
• the axis Aj^ which 

• for an SHGC is represented by the origin Oq (point of intersection of the 
straight axis with the cross-section plane) and its orientation NM 

• for a PRGC is represented by the equation of its plane nM and quadratic B- 
splines givingan analytic expression of the axis points Pa 

l and their tan- 
gent vectors Ta 

• the scaling function R^iz) giving for each arclength value z along the axis A^ 
the ratio Rj^ of the size of the cross-section at z with respect to the size of a ref- 
erence (e.g. "top") cross-section 

k (aligned with 
extremal axis tangent) 

^' k (aligned with axis) 

b. 

Figure 8.2 Object-centered part coordinate 
system for an SHGC (a); for a PRGC (b). 

Figure 8.3 shows these representations for one of the object models used in the 
current experimentation. 

8.3 Pose Estimation 

Given extracted image descriptions, a matching stage is first applied in order to 
automatically determine which of the model objects 0M corresponds to each image ob- 
ject Oj. This process uses qualitative attributes of both image and model objects (such 
as part label, sweep type, joint label) in a graph matching method. For lack of space, 
we will not describe the matching step in this paper. It results in pairings between 
image and model objects and for each of them, the pairings between image and model 
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Figure 8.3 Representation of one of the model objects used in the 
experiments. Left: side view of the object also showing axes. Right: 
scaling functions of the object's parts (SHGC function is shown first). 

parts. Each match (Oj, 0M) can be used to estimate the pose of the viewed object. The 
method uses the GC-based descriptions to establish correspondences between the im- 
age and model parts. We first describe the coordinate systems used and identify the 
pose parameters. 

8.3.1 Coordinate Systems and Pose Parameters 

The world coordinate system Ws= (0, x,y, I) is chosen so that the x- andy-di- 
rections coincide with those of the image plane whose coordinate system is Is = 
(O, x, y. For each object, a reference partq-ref is chosen. Each part's representational|o 
includes the transformation Tt between its own coordinate system Sq = (Oq, ij, k) 
and the one of qTei. Currently, we assume that one of the parts is an SHGC which is 
chosen to be qTe{ (which of the SHGCs, if many, is not important). 

A model object OM is represented in Ws such that the coordinate system of qTef 

coincides with Ws. See Figure 8.4.a. Thus, through the transformations Tt and the re- 
lationship between the coordinate systems of qre{ with Wg, we can determine the pose 
of each part with respect to Ws. To model the viewing geometry, we use scaled ortho- 
graphic (weak perspective) projection; i.e. we assume that objects' dimensions are 
small compared to their distance to the camera. In this model, the depth of a viewed 
object is taken to be the depth of a reference point P0 = (*0> ^0» z6? WS on tnat object. 
In this case, the projection of a vector V = P - P0 is equivalent to an orthographic pro- 
jection (along the z-direction) followed by a homogeneous scaling k in the image. Note 
that scaled orthography is used locally for each object, not the entire scene. As such, 
each object will have a different scaling factor k. The pose of a viewed object is deter- 
mined by finding the transformation T(P) = R P + t such that the projection of T(0M) 
coincides with O/; i.e. 

p = SO(T(P)) = SO(RP + t) (8.1) 
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where R is a rotation matrix, t a translation vector, P is any point of 0M (all expressed 
in Ws), p the projection (belonging to Oj and expressed in Is) of T(P), and SO denotes 
scaled orthographic projection. 

Because the third component oft is not used, the pose under scaled orthographic 
projection is determined by 6 parameters, namely 3 for R the first 2 components oft, 
say tx and ty, and k. We model R as the product of three rotations 

R - RJ, R„ R, 0 (8.2) 

where R^ is a rotation about the 2-axis by an angle cj), RCT a rotation about the *-axis by 
an angle a and Re a rotation about the z-axis by an angle 6. The whole sequence of 
transformations of equation (8.1) is illustrated in Figure 8.4.a-f. 

Using the translated origin of the reference model part qref as the reference point 
P0 , the relationship between image and model coordinates is given by 

u = k [cos8 (coscj) x - sin4> y) - sinö cosa (sin<j) x + cos(() y) + sinö sina z] + tx (8.3) 

v = k [sinö (coscj) x - siiuj) y) + cos6 cosa (sintj) x + coscj) y) - cos9 sina z] + ty (8.4) 

where (u, v) denote image coordinates in Ig and (x, y, z) denote model coordinates in 
the system of qref (which, at its original pose, coincides with Ws). 

Jky 
R* i> iy 

z k 

-r^ 
•>c 

kl c. 

iy 
SO iy 

f. e. d. 

Figure 8.4 Sequence of transformations applied to the model object 
OM so that its image coincides with Oj. 
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8.3.2 Establishing Correspondences for Single-Part Objects 

8.3.2.1 SHGCs 

8.3.2.1.1 Non-linear SHGCs 
In the case of a non-linear SHGC, for each cross-section Xn along the surface of 

the image SHGC (SHGC7), the scaling ratio Ru (available with the image description) 
it makes with the "top" cross-section is used to find the position zt (which we will al- 
ternatively refer to as z-value, a missing element in the image description) on the 
model SHGC (SHGCM) it projects from. This is done by starting from the image "top" 
cross-section which is matched with the model "top cross-section" whose z-value is 
zQ=01. Then, moving along the image axis, the z-value zt corresponding to each image 
cross-section XR along the surface of SHGC7is chosen to be the one closest (and supe- 
rior) to the previous z-value (zw) such that R^zd = Rn. This is done by "reading" the 
model scaling function in a table look-up fashion (see Figure 8.5). This process is not 
applied to cross-sections lying on constant regions of the scaling function since the 
correspondences would be ambiguous. 

Ä«(z) n 

Rn 

Figure 8.5 Finding correspondences between image cross-sections and 
model axis positions using the similarity of the invariant scaling ratios. 

This results in a set of correspondences, 

{(XK,Zi)i=Q..n} 

between image cross-sections and model positions (equivalently, model cross-sections 
Xj^Zi)) on the SHGC axis. Many image-model point correspondences can now be es- 
tablished. From one of the invariant properties of SHGCs described in [145], the lines 
joining parallel symmetric points between any pair of cross-sections intersect at a sin- 
gle point (local apex) which belongs to the SHGC axis (Figure 8.6). Thus, the image 
local apex (An) between each cross-section XIt (i > 0) and-Xj0 corresponds to the model 

1. the image "top" cross-section may also be matched with the model "bottom" cross- 
section in case the method fails. This amounts to considering the reverse parameteriza- 
tion of the model SHGC. 
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local apex (Aj^Zj)) between each model cross-section X^Zj) (i > 0) andX^O). The local 
apexes are determined analytically from the descriptions of the SHGCs. 

Adzi) 

*«(*/) 

image SHGC model SHGC 

Figure 8.6 Finding axes points correspondences between image and model 
SHGCs 

In the case where the SHGC axis passes through the cross-section mean (cen- 
tered SHGC) then additional point correspondences can be determined. A correspon- 
dence can be established between the mean, M^, of each cross-section XJI and the 
mean, M^Zj), of the corresponding cross-section Xyizj). This stems from the fact that, 
under scaled orthography, the projection of the mean of a closed planar curve is the 
mean of the projection of the curve. This results in the correspondences 

{{MIi,MM{zl))i=0..n} 

Figure 8.7 shows the correspondences (AIt, A^Zj)) and (MIt, M^z;)) for the 
SHGC of the mug in the back of Figure 8.1 (whose origin coincides with the cross-sec- 
tion mean). 

Figure 8.7 Image-model SHGC axis correspondences 
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8.3.2.1.2 Linear SHGCs 
For a conical LSHGC, the local apexes are all a single point (the cone apex). 

Thus, the set of correspondences between image and model local apexes is a singleton 
{(AI0, A^(0))}. However, the set of correspondences between image and model cross- 
section means (Mn, MM{z,)) includes all visible image cross-sections. 

For a cylindrical LSHGC, the local apexes are all at infinity and thus cannot be 
used. The set of correspondences between image and model cross-section means has 
two elements, mapping the image and model means of the top and bottom cross-sec- 
tions of the cylinder. We thus assume that a cylinder does not have a full portion of its 
surface occluded (it can still be partially occluded such that the full description can be 
inferred [145]). 

8.3.2.2 PRGCs 
The image description of an isolated PRGC is not as rich as the one of an isolated 

SHGC. The main reason is that, unlike with an SHGC, the scaling ratios cannot be 
determined in the image. In case enough "special" axis points, such as inflections or 
cross-section corners, exist (and can be identified) then correspondences can be estab- 
lished between image and model PRGCs. But this is not guaranteed. In general, 
though, it is observed that PRGCs are attached to other parts (serving for example, 
as handles, etc.). Thus, we choose to discuss PRGCs as part of composite objects. 

8.3.3 Establishing Correspondences for Multi-Parts Objects 

In some (but practically rare) situations, such as non-centered SHGCs, the sets 
of points M,i and An may not be colinear and thus they are sufficient to find the pose 
of a part (and the whole object if assumed rigid). However, in most cases, a multi-part 
object typically provides more information about the pose of all its parts, than each 
one of them does individually. For example, for the mug of Figure 8.1 (back), the pres- 
ence of the handle conveys the pose of the symmetric cup, whose rotation about its 
axis is ambiguous when considered alone (the points used for the cup correspondences 
are all colinear; Figure 8.7). 

In this case, we need at least one additional point correspondence which is not 
colinear with the SHGC axes. Below, we discuss the use of a PRGC attached to an 
SHGC. The case of two attached (non-colinear) SHGCs is similar. In case, more than 
two parts exist, any choice of non-colinear axes is equally valid. 

Let us denote PRGC/ and PRGCM the matched image and model PRGCs respec- 
tively. In case the axes of PRGC/ and PRGCM have inflections, then they can simply 
be used as "distinguished" points to put into correspondence. In case the axes do not 
have inflections, then we assume that the object's SHGC axis is contained in the 
PRGC axis plane, as is the case for many objects (due to physical stability reasons). 

In the latter case, the tangent line at each point Pj (pß of the axis of PRGCM 

(PRGC/) is either parallel to the axis of SHGCM (SHGC/) or intersects its supporting 
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line at some point BMj (By). Thus, given an image point By (possibly at infinity), if we 
can determine the corresponding point B^j then we have a correspondence between 
Pj and Pj (see Figure 8.8). But, using the previously matched points on the SHGC ax- 
es, we can construct corresponding basis vectors Vj and V^ on the axes of SHGC/ and 
SHGC^f, respectively, with respect to which we can identify corresponding points by 
the same 1-D coordinate (a) along any of these vectors. Thus, given a point By and its 
coordinate a.j (i.e. By = cc, Vj), BMj is given by 

BMj=ajVM. (8.5) 

'M 

axis of 
ajas of „ axi« of 
SHGr PRGC, -sof 

1 PRGCM S3HOCM 

Figure 8.8 Using the SHGC axes correspondences to find PRGC axes 
correspondences. 

In case OLJ -> °° (i.e. the tangent at pj is parallel to SHGC/s axis), then the corre- 
sponding point Pj should also have its tangent parallel to SHGC^'s axis. Thus, 
through the coordinates of points on the SHGC axes, we can now establish an arbi- 
trary number of point correspondences between the axes of PRGCj and PRGC^ 
(points whose tangents pass through By and BMj). 

Figure 8.9 shows a correspondence, for the back object in Figure 8.1, between 
the axes points of PRGC/ and PRGCM whose tangent lines are parallel to the SHGC 
axes. 

8.3.4 Solving for the Pose Parameters 

The image-model point correspondences obtained as described above are not all 
colinear. A choice of three non-colinear points should be sufficient to determine the 6 
pose parameters as discussed by [134]. Here, we briefly review the method. 

The angle 9 can be determined directly from the image and is given by the ori- 
entation of the image SHGC axis. Also, using only the image-model SHGC axes cor- 
respondences (UJ, vß*, (0, 0, zjfij = 1, ..m, we can determine tx, ty using a least squares 
formulation which results in: 
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Figure 8.9 An example of image-model PRGC axes correspondence (the 
corresponding points have tangents parallel to the SHGC axes). 

r|sin0Vz. + V«. 

'* = m 
\ty   = ■1 I  

m 
(8.6) 

where 

mYzj (sinQuj - COBQVJ) + YzlcosdYvj - sinej"^. 

mL*j-[Z'j 
J v J 

(8.7) 

Let pB = (ua, vaf and Pa = (xB, 0, zaf be any pair of matched points not colinear 
with the above points (for example, the matched points on the image and model PRGC 
axes, respectively; without loss of generality, the coordinate system of PRGCM is ro- 
tated such that its axis plane contains SHGCjj/s i-axis). 

Combining equations (8.3) (8.4), and (8.7), it can be shown that we obtain the 
quadratic form on X (see [134] for the details of the mathematical formulation): 

n\^2-[n\2 + wt^za + wi]2]x+wf = 0 (8.8) 

where ua-tx=W£va- ty= W«, and X = cos24>. 

For each solution $ = ± cos"1 (±+/X) (if a solution 0 <. X <. 1 exists), a and k can be 
determined by 

a = tan"1 
f
 T\X   SUKtP 

+ 5 n; k - (8.9) 

Wa + O 
where 5 = 0 or 1 depending on which results in a positive value of k. 
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Although the formulation of [134] leaves two possible solutions when three 
points are used, in our case we can uniquely determine the solution from the rich de- 
scriptions used. The solution is selected based on the image labeling of a part's cross- 
section as facing "towards" (o > -) or "away" (a < -) from the camera (this informa- 
tion is given from the types of junctions which terminate a part). This is another im- 
portant use of the high-level descriptions in finding the 3-D pose. 

The application of this method to the objects of Figure 8.1 is shown in 
Figure 8.10 showing the transformed and projected model objects (with cross-sections 
and meridians) on the image. Additional results are shown in Figure 8.11. 

a. b. 

Figure 8.10 Overlay of the model objects with their estimated poses on the 
intensity image of Figure 8.1. (a); a top view of the objects (b). 

8.4 Conclusion 
The pose estimation method exploits the rich GC descriptions in order to estab- 

lish (viewpoint invariant and quasi-invariant) point correspondences between axes, 
cross-sections and scaling functions of image and model parts. For the class of shapes 
addressed here, this results in a closed-form solution and avoids complex methods 
used in past work on curved objects. 

In the near future, we plan to extend the method in several ways. Although the 
class of objects demonstrated in this paper is more complex than demonstrated in ear- 
lier work on curved objects, we plan to extend the method to more general classes, in- 
cluding non-exact primitives. Additionally, we plan to develop an indexing strategy in 
order to handle large databases. The indexing scheme should also be based on the 
part-based descriptions of the extracted objects. 

Finally, we plan to integrate the current method into a larger framework of "rec- 
ognition by hierarchical classes". In this framework, the similarity of the image ob- 
jects is evaluated with respect to known generic classes starting from generic class 
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Figure 8.11 Another image of a previous object (back object of Figure 8.1) 
and its estimated pose. 

descriptions and ending at specific object instances. Recognition and pose estimation 
would then proceed from qualitative criteria, using class descriptions, to quantitative 
ones, using object instances as shown in this paper. This is important for tasks such 
as learning and database organization. We expect the representations we use to allow 
us to make rapid progress on these issues. 
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9 Representation and Computation 
of the Spatial Environment for 

Indoor Navigation 
Dongsung Kim and Ramakant Nevatia 

We introduce a spatial representation, s-map, for an indoor navigation robot. 
The s-map represents the locations of obstacles in a planar domain, where obstacles 
are defined as any objects that can block movement of the robot. In building the s- 
map, the viewing triangle constraint and the stability constraint are introduced for 
efficient verification of vertical surfaces. These verified vertical surfaces and 3-D seg- 
ments of obstacles smaller than a robot, are mapped to the s-map by simply dropping 
height information. Thus, the s-map is made directly from 3-D segments with simple 
verification, and represents obstacles in a planar domain so that it becomes a naviga- 
ble map for the robot without further processing. In addition to efficient map building, 
the s-map represents the environment more realistically and completely. Further- 
more, the s-map converts many navigation problems in 3-D, such as map fusion and 
path planning, into 2-D ones. We present the analysis of the s-map in terms of com- 
plexity and reliability, and discuss its pros and cons. Moreover, we show the results of 
the s-maps for indoor environments. 

9.1  Introduction 
Most navigation robots use vision systems to acquire information about the en- 

vironment in which they navigate. To acquire information, a robot should be able to 
represent the environment in some way. This depends on various conditions: the 
tasks to perform, the amount of an a priori knowledge of the environment, and the 
sensors used. A complete and accurate representation is needed as a robot performs 
sophisticated tasks. For instance, an occupancy map is enough to avoid obstacles, 
while explicit representation of materials is necessary for landmark recognition. 

The amount of a priori knowledge for the environment determines the complete- 
ness of representation of the environment. A fairly complete representation is neces- 
sary as a robot has small a priori knowledge for the environment. For a robot 
navigating in a known environment, the environmental representation can be simple 
low level features, such as edges in 2-D images, because the necessary condition for 
the robot to reach a goal is to locate itself in the environment. However, when a robot 
is navigating without a precise map, the environmental representation needs to be 
more complex. In our case, the robot has general information about the environment, 
such as flat floors and vertical walls. However, it does not have the specifics of the par- 
ticular environment; the locations of walls or doors and their widths. We will use the 
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term "Generic map" to refer such knowledge. For a robot with only a generic map, the 
representation should allow the robot to convert a generic map to a specific navigable 
map. 

Furthermore, the sensors used influence the representation of the environment. 
The main sensors used presently can be divided into two categories: active range sen- 
sors and passive range sensors. Using active sensors, an elevation map can be easily 
acquired because the sensors get dense occupancy information. However, they are ex- 
pensive and the occupancy information is not enough for robot navigation with only a 
generic map because object recognition is an important task for such a robot to reach 
a goal that is described symbolically, for example "turn at the end of a corridor." In the 
second category, passive stereo can acquire 3-D information of the environment. With 
the passive stereo, we get only a very sparse depth map. Making a complete map from 
the sparse depth map is one of the most challenging problems in computer vision. 

Little research has been done on the environmental representation for indoor ro- 
bot navigation with a generic map using passive sensors. The current methods for 
such environmental representation fall into two categories: those methods without 
surface reconstruction and those methods with surface reconstruction. In the first cat- 
egory, Moravec represented an environment simply with detected features [159], and 
Braunegg proposed a grid-based presentation using only vertical features [150]. Fur- 
ther, [156,160] tried to represent an environment with a single horizontal slice of a 
whole 3-D environment. These methods, which do not have surface reconstruction, 
make incomplete maps. This is because they may miss many surfaces if the surfaces 
do not have sufficient features or vertical lines. In addition, the method using a single 
horizontal slice suffers when all horizontal slices of the 3-D space are not the same. 
For the second category, Bras-Mehlman et al. attempted to make a surface with 3-D 
Delaunay triangulation and a visibility condition [149,157]. Bruzzone et al. first 
made 2-D Delaunay triangulation then back-projected into 3-D space [151]. Because 
these methods try to make a surface from adjacent segments, the reconstructed sur- 
faces may be unreasonable, and the constructed free space is shrunk unless there are 
sufficient segments. Conceptual grouping has also been used to reconstruct surfaces. 
Mohan and Nevatia attempted to make surfaces by finding rectangles [158]. Chung 
and Nevatia made surfaces from junctions[154]. Although the reconstructed surfaces 
are more reasonable, these methods need a lot of computation. 

We propose a spatial representation, s-map, for indoor robot navigation using a 
stereo system when a generic map is provided. The environments in which we have 
experimented are laboratories and corridors in our building, and mostly consist of 
vertical and horizontal surfaces. A laboratory used in the experiments is shown in 
Figure 9.1 . Obstacles in the environments have regular shapes that can be linearly 
approximated. The obstacles used in the experiment are traffic cones, trash cans, box- 
es, cabinets, desks, etc.. 
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(a)Image 1 (b) Image 2 
Figure 9.1 Laboratory 1 scene. 

(c) Image 3 

We use a Denning mobile robot, Antigone, for our experiments. This robot has 
ultra sonic sensors that are not used in these experiments, and vision sensors com- 
posed of three Sony cameras with Cosmicar lenses of focal length 8mm. The three 
camera are used to take images. The images are then digitized by a Sun Videopix on 
a Sun workstation. Then, the edges of the images are detected by a Canny edge detec- 
tor [152]. 

We use a junction-supported trinocular stereo system for matching the seg- 
ments. Our method similar to one developed at INRIA [147,148] but incorporates im- 
portant junction information [155]. Supporting junctions have been introduced for 
robust matching, and are defined as the junctions of a segment in one image, which 
are also maintained in homologous segments in the other images. The supporting 
junction for a segment is formed by the segment and one representative branch of the 
segment. The representative branch is selected among many branches to reduce com- 
plexity. This junction-supported trinocular matching reduces the ambiguity caused by 
edge detection error, calibration error, and lens distortion [155]. This stereo system 
gives segment matches as shown in Figure 9.13 that is the results of stereo matching 
for Figure 9.9 . Now the matched segments are used to reconstruct 3-D segments for 
making the s-map. 

Making a complete map from a sparse depth map, such as Figure 9.1 , is one of 
the most difficult problems because of insufficient 3-D information to resolve ambigu- 
ities in surface reconstruction. As we see in Figure 9.13 , the nearest segments in ei- 
ther 2-D or 3-D do not form a coplanar surface so that Delaunay triangulation 
methods make unrealistic surfaces. Moreover, deficient 3-D segments make surfaces 
shrunk. This problem is severer in conceptual grouping methods. The walls in 
Figure 9.1 do not have enough segments, so that they can hardly recovered. In addi- 
tion, the perceptual grouping is not so fast that can be used in robot navigation. 

From reconstructed 3-D segments and an image, the s-map represents the loca- 
tions of obstacles in a planar domain by simple mapping and verification. At first, an 
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Figure 9.2 Matched segments for Laboratory 1 

image is segmented into vertical slices according to the vertical segments. Then seg- 
ments are distributed among the vertical slices. Now each vertical slice is verified if 
it can make a vertical surface. The verification is simply done using the viewing tri- 
angle constraint and the stability constraint, described in Section 9.2. While the va- 
lidity of a vertical surface is decided, the segments in its slice are squeezed into an s- 
map if they can block robot movement.. 

These simple verification and mapping algorithms allow the robot to build the s- 
map efficiently. In addition, the s-map can represent the environment more realisti- 
cally and completely with relatively few 3-D segments because it makes the utmost 
use of characteristics of indoor environments. Furthermore, the s-map converts many 
navigation problems in 3-D to 2-D ones because it can represent objects in 2-D do- 
main. This s-map is used for the robot to find a path and navigate the environments. 

In Section 9.2 , we introduce an s-map as a spatial Representation For an indoor 
robot. In Section 9.3, we analyze the algorithm of the s-map. In Section 9.4 , we 
present the s-map results for indoor environments. Section 9.5 contains the conclu- 
sion of this paper. 

9.2  S-map 

Robot Navigation is defined by the set of tasks that a mobile robot has to perform 
in order to reach a goal. The tasks involve sensing the environment, analyzing and 
representing the environment, path planning, and robot locomotion. In this paper, we 
focus on the environmental representation for the indoor robot using a passive stereo 
system when only a generic map is given. The passive stereo system provides only 3- 
D segments for the robot to make a navigable map. 

The navigable map should represent where obstacles are located, and may rep- 
resent the shape of the obstacles, when necessary. However, most indoor robots need 
just the locations of obstacles because they can move only in a plane. Thus, we propose 
a spatial representation, s-map, which can represent the locations of obstacles in a 

150 Final Technical Report 



planar domain. The term, s-map, comes from the idea that the map is made by squeez- 
ing 3-D segments into a 2-D map. In this section, we will first give the definition of 
the s-map, and exploit characteristics of an indoor environment. Then we will intro- 
duce the viewing triangle constraint and the stability constraint, which incorporate 
the characteristics of an indoor environment to verify vertical surfaces efficiently. We 
will finally explain how to build the s-map. 

9.2.1 Definition of the s-map 

The s-map is defined as a map that represents the locations of the visible 3-D 
surfaces of obstacles in a 2-D space, where 2-D consists of width and length coordi- 
nates but does not include a height coordinate. Obstacles are defined as objects that 
can block the movement of the robot. Therefore, the objects beneath the ceiling are 
not considered obstacles because they do not block robot movement. Conceptually the 
s-map is made by first reconstructing a 3-D map and cutting the 3-D map from floor 
level to robot height level, and finally squeezing the cut 3-D map. However, we do not 
build the 3-D map, but rather make the s-map directly from 3-D segments. 

9.2.2 Characteristics of an indoor environment 

The characteristics of an indoor environment are different from those of an out- 
door one. Therefore, the characteristics should influence the methodology in order to 
make the utmost use of them. Now we present the characteristics of indoor environ- 
ments, and make reasonable assumptions on a navigation environment on which to 
base the algorithm. 

Rooms are mainly composed of vertical walls and horizontal floors, and are filled 
mostly with man-made objects. Among those man made objects, most objects taller 
than humans, such as bookshelves, are composed of vertical surfaces. On the other 
hand, top surfaces of the objects smaller than humans, such as a tea table, can be seen 
if they are not occluded. From these characteristics, we make three reasonable as- 
sumptions for the indoor environment: the floor is flat, and the objects that are taller 
than a robot, including walls, have vertical surfaces. Moreover, top surfaces of the 
smaller objects than the robot can be detected at least partially when they are visible. 

In order to use these characteristics, we divide objects into two categories: those 
that are smaller than the robot and those that are taller. Locations of the smaller ob- 
jects can be represented by simply dropping height information of the 3-D segments 
of the objects because the robot can see all the boundaries of visible surfaces. There- 
fore, the locations of the smaller objects are acquired by squeezing the 3-D line seg- 
ments of the smaller objects to the floor. For the taller objects, the robot may not see 
all the boundaries of visible surfaces. Horizontal boundary lines generated by an ob- 
ject and either the floor or the ceiling may not be seen due to occlusion by other objects 
or the small viewing angle of a lens. However, the vertical boundary lines are likely 
to be seen in most cases because they are tall enough not to be occluded when they 
are within viewing angles. These vertical lines are important clues to find the loca- 
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Figure 9.3 Viewing Triangle 

tions of the taller objects including walls. If we follow the same process as we do for 
the smaller objects, we get only points because the vertical lines are points in the 2-D 
space, which consists of width and length but not of height. Therefore, we need some 
kind of surface reconstruction with the vertical lines. 

The surface reconstruction with vertical lines uses the characteristic of a verti- 
cal surface, that is, the vertical surface has two adjacent vertical lines bounding it. 
However, all adjacent vertical lines are not in the same surface. Two adjacent vertical 
lines fall into two categories: both of them are on the same surface or they are on dif- 
ferent surfaces. Those two adjacent vertical lines that are on the same surface can 
make a surface. However, those two adjacent vertical lines that are on the different 
surfaces cannot make a surface. Therefore, vertical surfaces are reconstructed only 
from the two adjacent vertical lines on the same surface. Then the reconstructed ver- 
tical surfaces are squeezed to a floor. Now the problem of surface reconstruction with 
the vertical lines becomes how to verify if two adjacent lines are on the same surface. 
The verification process is described in section 9.2.3 . 

9.2.3 Viewing triangle constraint 

We assume that objects are opaque. Seeing an object means that the visible part 
of the object is not occluded by any other obstacles. Similarly, a 3-D segment corre- 
sponding to the edge detected in an image, is not occluded by any other objects. From 
the above observation, we introduce the viewing triangle constraint described below. 
Before explaining the viewing triangle constraint, we define the viewing triangle as 
follows. 

Definition: Viewing triangle The triangle made with a view point and the 3- 
D segment corresponding to the edge detected in an image 

Figure 9.3 shows a viewing triangle.. 

Now the viewing triangle constraint is stated as follows. 
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Observation 1 : Viewing Triangle Constraint The space confined within a 
viewing triangle is free space. 

This viewing triangle constraint is used to verify whether two adjacent vertical 
lines are on the same surface and make a vertical surface. Before explaining how to 
use the viewing triangle constraint for verification, we describe how to find adjacent 
vertical lines. First, a vertical line is found in a 2-D image, and the verticality of the 
vertical line is checked with its 3-D information. Moreover, The vertical line should 
be also taller than a robot because they are assumed to be boundary vertical segments 
of vertical surfaces that are taller than a robot. Then, for the vertical line, an adjacent 
vertical line, which also satisfies the above conditions, is searched for in the image. 

After finding two adjacent vertical lines, we collect segments between them. Col- 
lecting such segments is done by simply checking column coordinates of segments. Be- 
cause a vertical segment has the same row coordinate value along the column 
coordinate, its column coordinate can represent its location in the image. Therefore, 
segments are collected into a vertical slice made by the two adjacent vertical lines if 
column coordinates of the segments are located between column coordinates of the 
two adjacent vertical segments. The segments are then categorized into three groups: 
coplanar, inhibition, and irrelevant segments. 

• coplanar segments : The segments that are coplanar with the hypothesized ver- 
tical surface made with two adjacent vertical lines. 

• inhibition segments : The segments that are either behind or across the hy- 
pothesized vertical surface 

• irrelevant segments : The segments that are in front of the hypothesized verti- 
cal surface. 
When the presence of the surface is verified, the verification is done conserva- 

tively to prevent the robot from hitting obstacles. When the robot misses a real wall, 
it collides with it. Making an imaginary wall only reduces free space, and the reduced 
free space can be expanded by the following image sequence. Therefore, we presume 
that there is a wall unless there is evidence of nonexistence of the wall. The evidence 
comes from the segments in its vertical slice. 

The viewing triangle constraint generated by coplanar segments helps two ad- 
jacent vertical lines make a vertical surface. However, the viewing triangle constraint 
generated by inhibition segments prevents the two adjacent vertical lines from mak- 
ing a vertical surface. As the name suggests, irrelevant segments do not affect the 
making of a vertical surface with the two adjacent vertical lines. Thus verification of 
presence of a vertical surface for two adjacent vertical lines is done by checking if 
there are inhibition segments between the two adjacent vertical lines. This verifica- 
tion using inhibition segments leads the following observation. 

Observation 2. Verification with viewing triangle constraint Two adja- 
cent vertical lines can make a vertical surface if the surface does not violate the viewing 
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triangle constraint generated from the segments between the two adjacent vertical 
lines. 

9.2.4 Stability constraint 

We introduce perceptual grouping to extend surfaces that are missed by the re- 
construction using the viewing triangle constraints. Although much research has 
been done on grouping for surface reconstruction both in 2-D and 3-D, the research 
has tried to group surfaces by hypothesize-and-test methods with geometric proper- 
ties. One drawback of this approach is that it requires a lot of computation. Therefore, 
it is not practical for robot navigation where an important concern is real time navi- 
gation. We try to achieve speed by searching small areas with the help of the stability 
constraint. Before explaining grouping, we describe the stability constraint. Then we 
describe the cases when perceptual grouping is necessary, and the perceptual group- 
ing to extend surfaces. 

The stability constraint is described as follows. 

Stability constraint Every object must be stable with respect to gravity. 

Pin-like objects, such as vertical segments, tend to fall down unless there are 
some supports. Conversely, if there is a vertical segment, then there are supports for 
it. The supports can be any segments adjacent to the vertical segment, which can keep 
the vertical segment vertical. In an indoor environment, the vertical segments are as- 
sumed to be side ends of vertical surfaces. Thus the supports are the segments that 
are adjacent to the end points of the vertical segments and are either on a stable plane 
or beneath a stable plane. Figure 9.4 illustrates the supports for a vertical segment. 

Grouping segments of the same vertical surface is necessary when one of our as- 
sumptions is loosely preserved. A basic assumption of reconstructing a vertical sur- 
face is that both vertical end lines for the surface are visible, but that assumption is 
not always true. The missing end line occurs in cases of clipping or occlusion. The clip- 
ping case occurs when a wall is so large that entire wall is not covered in an image. 
In the second case, a wall is occluded by other vertical objects, such as a cabinet, so 
that vertical lines of other objects locate between the two vertical lines of the wall. 
These two cases cause missing vertical surfaces. 

The missing surfaces can be extended if there is a support. When there is more 
than one support, the farthest support line is selected among them. The support and 
the vertical line can make a vertical surface if the surface hypothesized by them does 
not violate the viewing triangle constraint. For easy implementation of the verifica- 
tion, a ghost vertical line is introduced. The ghost vertical line for a vertical line is an 
imaginary vertical line that is located at the end point of a support line of the vertical 
line. The ghost vertical line for the clipping case is made when vertical segments are 
collected, while the ghost vertical line for the occlusion case is made when a vertical 
slice has inhibition segments. After finding a ghost vertical line, the vertical slice 
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Figure 9.4 The supports for a vertical segments 

made by a vertical line and its ghost vertical line does the same verification as ordi- 

nary vertical slices do. 

9.2.5 Algorithm for making the s-map 

The algorithm for making the s-map is in two steps: segmentation of an image 
into vertical slices, and verification of vertical surfaces for the vertical slices while 
mapping smaller objects into the s-map. The first step is further divided into three 
modules: collecting vertical segments taller than a robot, dividing the image among 
vertical slices according to the collected vertical segments, and distributing other seg- 
ments among the vertical slices. The algorithm for making a s-map is summarized in 
Figure 9.5 . The details of the algorithm are given below. 

In the first step, we first collect vertical segments including ghost vertical lines. 
Next, we divide an image into vertical slices according to the vertical segments. Fi- 
nally, the remaining segments, such as nonvertical segments and the vertical seg- 
ments smaller than a robot, are distributed among the vertical slices. While being 
distributed, the segments are categorized into three groups: inhibition segments, co- 
planar segments, and irrelevant segments. Each segment is distributed among those 
vertical slices that lie in between the begin and end points of the segment. 

At the second step of making an s-map, we verify the presence of the vertical sur- 
face hypothesized by a vertical slice while mapping possible obstacles into the s-map. 
If there are no inhibition segments, a vertical surface is presumed existing. Other- 
wise, a support for a vertical segment is searched for. In the case, where no support 
for the vertical segment is found, no further attempt is made to find a partial vertical 
surface. In the other case, where a support for a vertical segment is found, a partial 

Final Technical Report 155 



c 
B 

A 

1 o 2 

0 
D 

T3\ 
/               \E A      B   C    D   =E 

a) Edges b) Vertical lines 
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c) S-map 

vertical surface is hypothesized with the support and the vertical segment. The hy- 
pothesized vertical surface is verified using the viewing triangle constraint, that is, if 
there is no inhibition segment for the surface hypothesized, the surface is presumed 
existing. 

While verifying the presence of a vertical surface, the segments smaller than the 
robot are mapped to an s-map by simply dropping height information because the ro- 
bot can see the boundaries of the top surfaces as described in section 9.2.2. 

One example of making an s-map is shown in Figure 9.6 -a, b, and c. One edge 
image for an indoor scene is given in Figure 9.6 -a. In this figure, we assume that A, 
B, C, and D are vertical lines and that segments group 1, 2, and 3 are coplanar seg- 
ments, inhibition segments, and irrelevant segments, respectively. First, this image 
is segmented. From this image, we can make vertical slices according to vertical lines 
A, B, C, D, and E. E is a ghost vertical line. Figure 9.6 -b shows the vertical lines. Now 
other segments are distributed among vertical slices. Segment groups 1 and 3 are dis- 
tributed into the slice made with B and C, and segment group 2 is distributed into the 
slice made with C and D. While distributing the segments, we classify the segments 
into one of three groups: coplanar, inhibition, and irrelevant groups. At the second 
step, verification is done. The slice made from A and B reconstructs a vertical surface 
because there are no inhibition segments, and then the vertical surface is mapped to 
an s-map. Similarly, the slice made from B and C is mapped to the s-map while seg- 
ments group 3 is mapped to the s-map because the segment group 3 can be an obstacle 
for the robot. However, the slice made from C and D cannot form a vertical surface 
because there are inhibition segments that constitute segment group 2. Instead, the 
segment group 2 is mapped to the s-map because it can block the movement of a robot. 
The slice made from D and E is mapped to the s-map because there are no inhibition 
segments. The s-map of Figure 9.6 -a is shown in Figure 9.6 -c. 
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1) Segmentation of an image 

a) We collect vertical lines taller than the robot. 

b) The image is segmented into vertical slices according to the vertical lines. 

c) Other segments are distributed among the vertical slices. The segments in a slice are 
categorized into the three groups: coplanar, inhibition, and irrelevant groups. 

2) Verification and mapping 

a) In each slice, the validity of the hypothesized vertical surface is checked in terms of 
the viewing triangle constraint. 

If the vertical surface is valid one 

then the surface is squeezed into the s-map. 

else a support for a vertical segment is searched for. 

If there is a support 

and the surface made by the support 

and the vertical is a valid surface 

then the surface is squeezed into 

the s-map. 

b) While the validity of a vertical surface is decided, the segments in its slice are 
squeezed into an s-map if they can block robot movement. 

Figure 9.5 Algorithm for building a s-map 

9.3 Discussion of the s-map 
9.3.1 Complexity of the s-map 

The s-map algorithm is analyzed for its complexity. Let's assume that there are 
n matched segments in an image. Selection of vertical lines takes 0(n), and dividing 
the image needs sorting of the vertical lines. Let the number of vertical lines I and the 
number of columns c. Because vertical lines have the same column coordinate, the 
vertical lines can be sorted by a bucket sort method where buckets are image columns. 
Thus the complexity of sorting is 0(max(l,c)). Now nonvertical segments are distrib- 
uted among slices. They are distributed to those slices that the nonvertical segments 
straddle. These slices are simply the slices lying between the column coordinates of 
their end points. The worst case is that all nonvertical segments straddle all vertical 
segments, where the complexity is 0(1 x (n-l)). The maximum of this complexity occurs 
when I is nl 2. Therefore, the worst case complexity is 0(n2). In real cases, most non- 
vertical segments straddle less than three vertical slices and the number of vertical 
slices is less than ten because the number of walls and tall objects is small in indoor 
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environments. Thus we estimate the complexity to be 0{n) in real cases though a 
much deeper analysis is necessary. Finally, the complexity of the verification algo- 
rithm is the same as that of distribution. The complexity of s-map is 0(n2) in worst 
case, and 0(n) in real cases. 

The run time of the making the s-map from reconstructed 3-D segments was 
about one tenth of a second in our experiments. The algorithm was run in the Sun 
Sparestation 10. The algorithm is currently programmed in Lisp. Moreover, the cur- 
rent program is not an optimized one. Thus the run time can be reduced by optimizing 
it. In addition, the run time can be further reduced by mutiprocessors because each 
slice can be verified independent of the other slices. 

9.3.2 Reliability of the s-map 

Graceful degradation is one of the important aspects for vision algorithms be- 
cause vision algorithms deal with real pictures whose quality varies according to en- 
vironmental changes. For the s-map algorithm, there are two places where errors 
come in: Edge detection and matching. In edge detection, the most common errors are 
missing edges, shortened or broken edges, and mislocated edges. These errors affect 
the performance of not only matching but also the s-map algorithm. In matching, 
common errors are wrong matches, missing matches, and shortened matches. From 
these two levels of errors, the s-map algorithm suffers from four kinds of errors: par- 
tial matches, missing matches, mislocated matches, and wrong matches. For these 
four cases, the reliability of the algorithm is explored. 

In the first case, partial matches do not affect taller object surfaces, but shrink 
smaller object surfaces when the partial matches are segments of top surfaces. In re- 
constructing a vertical surface, the necessary information constitutes locations of ver- 
tical lines and coplanar segments, as described in section 9.2.4. Therefore, partial 
matches do not degrade the algorithm of reconstructing vertical surfaces. In recon- 
structing the smaller objects, only segments of top surfaces are necessary. Thus only 
partial matches of top surfaces shrink smaller objects. The shrunk surfaces may be 
extended by grouping the top surfaces. However, such extensions are not necessary in 
most navigation problems because the shrunk portion of an object is relatively small 
and does not cause problems for a robot to plan a path with the shrunk object. 

In the second case, missing matches can degrade the s-map algorithm more se- 
verely. For simple analysis, we assume that every surface is a quadrilateral. For taller 
objects, even two missing matches are tolerable if they are nonvertical lines. In the 
case of missing either of the two vertical lines, the shrunk vertical surface can be re- 
constructed if there is a support. For smaller objects, missing those matches that are 
not top surface boundaries does not degrade the algorithm of the s-map at all because 
top boundaries represent the location of the objects in the s-map. Missing some of top 
boundaries means that an object is shrunk. Even in the case where only one of the top 
boundaries is detected, the location of the object can be still known. 
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Finally, both mislocated matches and wrong matches show the same error pat- 
tern because both of them generate a 3-D segment having wrong 3-D information. 
They cause more damage to taller objects if they are vertical lines of the taller surfac- 
es. They shift location of the vertical surfaces. However, for smaller objects, they do 
not affect the location of the object. They just place themselves in wrong locations be- 
cause the s-map does not make surfaces by combining boundary lines of smaller ob- 
jects, and may prevent two adjacent vertical segments from making a vertical surface 
when the wrong matches become inhibition segments of them. 

9.3.3 Advantages and disadvantages of the s-map 

The advantages of the s-map are fourfold: Making the map is very simple. The 
map is directly made from 3-D segments, so it is not necessary to reconstruct a 3-D 
open space. The second advantage is that the s-map itself is a navigable map. There- 
fore, we do not have to cut a 3-D space to find a navigable map. In conventional meth- 
ods [157,151], it is very difficult to find a cutting height level of a 3-D space for 
navigation. Since a reconstructed 3-D space is produced by visible line segments and 
the lower part of objects may be invisible, the reconstructed 3-D space could be too 
conservative at the lower level of a navigation environment so that only small free 
area is available for navigation. Thus, finding a cutting level is a compromise between 
area of navigable space and safety. Therefore, deciding the cutting level is difficult. 
Thirdly, the s-map represents the environment more realistically and completely with 
relatively few 3-D segments. This comes from the utmost use of characteristics of in- 
door environments, which are embedded in the viewing triangle constraint and the 
stability constraint. Finally, the s-map can turn many 3-D problems in navigation into 
2-D problems, for example, path planning and map fusion. Therefore, many naviga- 
tion problems can be solved efficiently. The disadvantage of the s-map is that wrong 
matches may prevent two adjacent vertical segments from making a vertical surface 
when the wrong matches become inhibition segments. 

9.4 Results 
We have tested the s-map in indoor environments, such as corridors and labora- 

tories. Moreover, our robot has successfully navigated corridors in our building by rep- 
resenting the corridors with the s-map [155]. 

In this paper, we present the s-maps for two laboratory image frames and one 
corridor image frame, which are illustrated in Figure 9.8, Figure 9.11 , and 
Figure 9.14 . As we can see in these s-maps, the accuracy of the s-maps depends on 
the accuracy of the reconstructed 3-D segments. Therefore, a more accurate s-map 
can be acquired with more accurate the reconstructed 3-D segments. This depends on 
accuracy of a stereo system. 

Figure 9.1 shows an image frame for a laboratory. Moreover, Figure 9.1 dis- 
plays matched segments of the Figure 9.1 . Now vertical segments are selected. 
Figure 9.7 illustrates the selected vertical segments. Among the vertical segments, 
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Figure 9.7 Vertical segments of Laboratory 1 

Figure 9.8 S-map of Laboratory 1 

the vertical segment 7 is a ghost vertical segment made by the support of the vertical 
segment 6. Then the verification and the mapping are done. The locations of two 
walls, a box, and a cabinet are successfully represented in the s-map. Moreover, the 
right wall is extended with the vertical and its support: Segment 1 and Segment 2 in 
Figure 9.1 . Similarly, the left wall that is between the cabinet and the door, is also 
extended with the vertical segment and its support: Segment 12 and Segment 10 in 
Figure 9.1 . 

Figure 9.9 shows an image frame for a laboratory. Moreover, Figure 9.10 dis- 
plays matched segments of Figure 9.9 . The s-map is given in Figure 9.11 . The loca- 
tions of a desk, an air conditioner, and a cabinet are represented in the s-map. A wall 
behind the desk is also represented in the s-map. Moreover, front part of the cabinet 
is extended with the vertical segment and its support: Segment 37 and Segment 35 in 
Figure 9.10 . Similarly, the air conditioner is also extended with the vertical segment 
and its support: Segment 23 and Segment 22 in Figure 9.10 . 
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a) Image 1 b) Image 2 

Figure 9.9 Laboratory 2 

c) Image 3 

Figure 9.12 shows an image frame for a corridor. Moreover, Figure 9.13 dis- 
plays matched segments with the s-map given in Figure 9.14 . Two walls of the corri- 
dor and one wall at the end of the corridor are represented. Moreover, two traffic cones 
are successfully represented. 

9.5 Conclusion 
In this paper, we introduced a new representation of an indoor environment, s- 

map, which can represent the location of obstacles in a planar map. The obstacles are 
defined as any objects that can block robot movement. The s-map utilizes the viewing 
triangle constraint and the stability constraint. These constraints provide both effi- 
cient validation of the vertical surface hypothesized by two adjacent vertical lines and 
efficient grouping of the partial vertical surface having a single vertical line. The s- 
map is made by mapping the 3-D segments of smaller objects and verified vertical sur- 
faces into a planar map. The mapping is done by dropping height information of the 
3-D segments or the vertical surfaces. Therefore, this mapping allows the s-map to be 
made directly from 3-D segments without reconstructing a 3-D open space and to rep- 
resent obstacles in a planar map that is a navigable map for the robot moving in a 
plane. In addition to the efficient map making, the s-map transforms many 3-D prob- 
lems in navigation into 2-D problems because it represents objects in 2-D domain. 
However, the s-map is applicable only in limited environments because it assumes flat 
horizontal floors and vertical walls, and it degrades when there are wrong matches 
becoming inhibition segments. Our future effort will be directed toward extending the 
s-map for more complex environments and adding robustness in validating vertical 
surfaces against wrong matches becoming inhibition segments. 

9.6 References for Chapter 
[147]N. Ayache. Artificial Vision for Mobile Robots. The MIT Press, 1991. 
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Figure 9.10 Matched segments for Laboratory 2 

Figure 9.11 S-map for laboratory 2 
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Figure 9.12 Corridor Scene 

c) Image 3 
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10 A Method for Recognition and 
Localization of Generic Objects for 

Indoor Navigation 
Dongsung Kim and Ramakant Nevatia 

We introduce an efficient method for recognition and localization of generic ob- 
jects for robot navigation, which works on real scenes. The generic objects used in our 
experiments are desks and doors as they are suitable landmarks for navigation. The 
recognition method uses significant surfaces and accompanying functional evidence 
for recognition of such objects. Currently, our system works with planar surfaces only 
and assumes that the objects are in a "standard" pose. The localization and orienta- 
tion of an object are represented with the most significant surface in an "s-map." Some 
results for laboratory scenes are given. 

10.1  Introduction 
Our goal is to provide visual capabilities for a robot to navigate in indoor envi- 

ronments such as an office building. For this, not only must the robot be able to sense 
the objects in its environment for the purpose of obstacle detection but also recognize 
some of them to be used as landmarks for navigation. One approach to this task could 
be to provide a detailed map of the objects and structures in the environment to the 
robot. This allows conventional model-based object recognition techniques to be used 
for landmark detection and path planning. This strategy, however, has several limi- 
tations. First, the objects and their arrangement in an indoor setting are constantly 
changing. Even normally stationary objects, such as furniture, may be moved occa- 
sionally. Also, providing detailed geometric models for all objects even in a single room 
can be a very difficult and tedious task. When a common object, such as a desk, is re- 
placed by another one, completely new models may have to be provided even if the two 
objects serve similar functions. 

To overcome these difficulties, we propose to represent the objects and structures 
by some generic models. This enables the objects to be recognized as belonging to a 
certain class without having to also determine which specific one. Such generic mod- 
eling allows the robot to navigate in environments without knowledge of the specific 
instances or their locations. 

An example of a scene that the robot must handle is shown in Figure 10.1. The 
robot may be asked to use a desk as a landmark and to pass through a door after the 
desk. We only wish to provide generic descriptions of the room and the objects to the 
robot. A room can be thus characterized by horizontal doors and vertical walls that 
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may have doors. The room may consist of objects, such as desk, whose generic prop- 
erties are known to the robot, but also other unknown objects which can not be used 
as landmarks but nonetheless must be avoided during navigation. In this paper, we 
will focus only on the recognition of the generic classes. 

(a) Image 1 (b) Image 2 

Figure 10.1  Door 1 

(c) Image 3 

Little research has been done on recognition of generic classes of objects in com- 
puter vision. It is somewhat difficult to precisely define the notion of a generic class, 
but it surely excludes precise geometric models. The most generic representation of 
an object is probably in terms of its functionality. Thus, concept of a door is that of an 
opening allowing passage of objects and a means of closing this opening. The concept 
of a desk is that of an object that allows a human to place objects on it and work on 
them in a comfortable posture. The inference of such high level functionality from real 
images is, however, quite difficult. Some attempts have been made towards this [Star- 
Bowy91], but these systems do not take images as inputs. In early work, Tenenbaum 
and Garvey [Garv-Tene74,Tene73] attempted to recognize objects in an office scene by 
using point properties; however, such properties are not sufficient to distinguish 
among complex objects in a complex scene, in general. Another approach is to view 
various instances of a class as generated by varying parameters of a parametric rep- 
resentation. Parametric representations have been studied by several researchers 
[Broo83,Grim89,Lowe87,Marr-Nish77,Neva-Binf77], however, such approaches do 
not naturally capture the common variations found in everyday objects such as desks. 

In this paper, we propose an approach of representing objects by their significant 
surfaces and by relations among them, which we believe is sufficiently general for rec- 
ognizing common objects in an indoor environment and can work with real scenes. 
Significant surfaces are chosen based on their functional role. A desk is thus charac- 
terized by a working surface and some surfaces that correspond to the support struc- 
tures, that is "legs." The working surface is characterized by some properties, such as 
a range of sizes and heights. Besides the observation of surface properties, the surfac- 
es can also be observed by their function, for example, a working surface of a desk 
could be inferred by the objects placed upon it; we call such evidence as the functional 



evidence. Such a representation can allow us to recognize several instances of desks, 
not all similar in shape and construction, and not necessarily seen previously, in a ro- 
bust and efficient manner. 

The method is robust because significant surfaces aid in detection of the other 
significant surfaces. A significant surface can confine a domain of another significant 
surface. The confined domain allows the system to recover a missed significant sur- 

face. 

Our current system makes two major assumptions. First, it deals with only pla- 
nar surfaces. Objects with non-planar surfaces must have sufficient planar surfaces 
to be recognized. Second, it assumes that an object is in a "standard" pose. A standard 
pose of an object is the one in which the object is usually found in its natural environ- 
ment. This standard pose allows the systems to recognize objects efficiently. For ex- 
ample, a desk is expected to be placed with its working surface horizontal. 

Currently, our system has models for only two classes of objects: doors and desks. 
We believe that these are sufficient as landmarks for navigation in many office and 
laboratory environments. Moreover, we believe that our approach can accommodate 
a wider range of objects easily. 

A block diagram of our system is given in Figurel0.2. Note that we do not auto- 
matically infer significant surfaces from functional descriptions; this translation is 
currently done by the programmer. 

Object 

T 
Functional representation 

I 
Surface representation 

ZE: 

I 
Functional evidence 

1 
Primitive representation 

Images 

Figure 10.2   Overview of the recognition system 



The input to our system is from three cameras arranged to perform trinocular 
stereo and mounted on a Denning mobile robot. We perform stereo matching on linear 
line segments detected from the three images. Our matching method is described in 
detail in [Kim-Neva93] and is similar to one developed at INRIA [Ayac91] but incor- 
porates important junction information. Note that this essentially provides a sparse 
set of 3-D segments and a somewhat larger set of 2-D segments for the robot to at- 
tempt its recognition from. 

Detection of the significant surfaces from 2-D and 3-D segments is basically done 
using perceptual grouping. The detection utilizes the four primitives of the surfaces: 
orientation, height, shape, and size. The orientation and height are used to reduce 
search space while the shape and size are utilized for perceptual grouping. Shape of 
a significant surface may vary for a generic object. Such varying shapes can be detect- 
ed with help of other significant surfaces. For example, a round desk top surface can 
be detected with help of legs. The details are described in Section 10.4. 

Localization of an object in our system is represented in an s-map. The s-map is 
defined as a map that represents the locations of the visible 3-D surfaces of obstacles 
in a 2-D space, where 2-D consists of width and length coordinates but does not in- 
clude a height coordinate. Obstacles are defined as objects that can block the move- 
ment of the robot. The s-map is made efficiently from 3-D segments. Further details 
can be found in [Kim-Neva94]. 

Section 10.2 explains the significant surface of an object and its primitives. Per- 
ceptual grouping for the significant surface is also investigated. Section 10.3 describes 
recognizing and localizing doors. Section 10.4 resents recognition and localization of 
desks. Section 10.5 analyzes the recognition system. Finally, Section 10.6 concludes 
this paper. 

10.2 Significant Surface Representation 

Significant surfaces follow from the functions that an object performs. Note that 
one surface may serve several functions whereas a single function may require pres- 
ence of several surfaces. For example, for a desk, the function of being able to work at 
a comfortable heights requires a table top within a certain height range as well as 
some legs for support. 

We order the significant surfaces by how essential they are to the functions that 
they enable. For a desk, we consider the top surface to be more significant than the 
legs. For an object to be recognized, its most significant surface must be detected. 

10.2.1 Primitives of a Significant Surface 

A significant surface in a standard pose can be characterized by the four primi- 
tives: orientation, range of heights, shape, and size. The orientation and height are 
decided by the standard pose while the shape and size are determined by the signifi- 



cant surface itself. The orientation and height can reduce the number of candidate 
segments for perceptual grouping to find the surface having the shape and size. 

• Orientation: a significant surface of an object has a fixed orientation relative to 
a horizontal plane in standard pose. For example, a desk top is horizontal. 

• Range of height: all the points in a significant surface are within a certain 
range in terms of their heights above the floor. For example, desk legs have a 
height range of between zero and 1 meter above the floor. 

• Shape: shape of a significant surface may be given in general form. For in- 
stance, desk tops generally have a rectangular shape. However, we may be able 
to detect desk with non-rectangular shape also, based on evidence provided by 
legs and objects supported on it. 

• Size: size of a significant surface of an object is within a certain range. For ex- 
ample, a desk top should have an appropriate size for a human to work on. 

10.2.2 Perceptual Grouping to Detect a Significant Surface 

Perceptual grouping is used to find a significant surface from 2-D and 3-D seg- 
ments. The candidate segments can be limited using orientation and height primi- 
tives of the significant surface. Perceptual grouping for the significant surface varies 
depending on its shape. Thus the details of perceptual grouping for each significant 
surface are explained in the related sections. 

In perceptual grouping, 2-D information as well as 3-D information is utilized. 
This can reduce grouping errors caused by matching errors. The loss of information 
caused by missing matches and/or partial matches may be recovered using 2-D seg- 
ment information in two ways. First, missing matches hinder two less meaningful 
features from becoming a more meaningful one because of lost information. Such lost 
information can be recovered if there are 2-D segments that can support the mean- 
ingful feature. For example, a rectangle with a 3-D U-shape can be classified as a rect- 
angle with higher confidence if it has 2-D segments that can make the U-shape a 
rectangular shape. Second, partial matches may prevent two less meaningful fea- 
tures from being grouped into a more meaningful feature when proximity of two fea- 
tures is used as one criterion. The partial matches may lose adjacent portion of two 
less meaningful features, and prevent them from being a more meaningful feature. 
This error can be overcome if 2-D segments in addition to 3-D segments are used in 
checking the proximity of two features. 

10.3 Recognition of Doors 
A door has some functions. The most significant function is for a human and oth- 

er objects such as furniture to pass through. This decides the most significant surface, 
a door frame. Another significant function can be separation of space when the door 
is not used as a passage. This determines another significant surface, a door panel. In 
addition to these significant surfaces, a door may be supported by functional evidence. 



The functional evidence consists of objects seen through a door when it is open. This 
information helps to decide that the detected door is not a simple drawing but a real 
door. 

First, detecting a door frame as the most significant surface is described. Then 
detecting a door panel as another significant surface is explained. Next, detecting 
functional evidence is explored. Finally, the results of detecting doors are illustrated. 

10.3.1 Detecting a Door Frame 

Adoor frame can be characterized by the following four primitives: a vertical ori- 
entation, a height range between a floor and 2.5 meters above the floor, a rectangular 
shape, and passable size. The orientation and height reduce search space for candi- 
date segments. The shape and size decide a perceptual grouping method to detect the 
door frame from the candidate segments. 

A door frame has three components: top bar, left pole, and right pole. A door 
frame can be detected by finding a U-shape consisting of the top bar, the left pole, and 
the right pole. 

Candidate segments for top bars, left poles, and right poles are searched in a limited 
space as described below. The candidate segments are then grouped into door frames. 
The details of collecting candidate segments and perceptual grouping are described 

below. In addition, the algorithm to detect door is summarized in Figure 10.3. 

1. Collect possible top bars 
2. Collect left and right poles 
3. Hyphothesize doors 

If there is a top bar 
then hypothesize a door with a top bar, left pole, and right pole 
else hypothesize a door with a left pole and right pole 

if there is a 2-D top bar between them 
4. Verify a door 

3-D validation with distance and alignment 
2-D validation with distance 

Figure 10.3 Algorithm for detecting a door frame 

Candidate segments are efficiently collected using orientation and size primi- 
tives for the three components described above. The orientation and size confine the 
search space of the candidate segments to vertical surfaces whose height is between 
a floor and 2.5 meters above the floor. A top bar should be a horizontal line of sufficient 
length and height, so that a human can pass under the top bar. Poles should be ver- 
tical lines that are high enough for a human to pass, and the distance between the 
two poles should be wide enough so that a human can pass. First, collecting possible 
top bars are explained. Collecting possible poles are then explored. 

Possible top bars are collected from matched segments. A segment can be a pos- 
sible top bar if it has sufficient height and width. While checking the length of a 



matched segment, shrunk 3-D segments due to partial matching can be recovered by- 
considering what portion of 2-D segments are used in reconstructing the 3-D segment. 

Left and right poles have the same characteristics in terms of primitives. The 
poles are also collected among matched segments. A vertical segment can be a possi- 
ble pole if it is high enough. 

Now top bars and poles are perceptual grouped into U-shapes. If top bars of all 
doors are assumed to be detected, then hypothesizing doors is relatively simple. How- 
ever, the assumption is not always true. Thus missing a top bar should be considered 
when hypothesizing doors. 

When a top bar is available, a door is hypothesized with a left pole, a top bar, and 
a right pole. The right pole is in the scope of the top bar. The right pole in the scope of 
a top bar is a pole below the top bar in an image. 

When a top bar is unavailable, a door is hypothesized only with a left pole and a 
right pole. The right pole is next pole to the left pole. In addition, the distance between 
them is sufficient for a door. The poles should have a 2-D top bar bridging them. If so, 
a door is hypothesized with the top bar and two poles. 

After hypothesizing a door frame, the door frame is verified with its 2-D and 3- 
D information. As a 3-D validation, distance and alignment are verified. The distance 
gap between an end point of a top bar and each pole should be within a threshold val- 
ue. Moreover, Three components of a door frame should be aligned to a single line in 
an s-map because they are aligned to a single line at the top view. As a 2-D validation, 
the distance gap between each end point of a top bar and an upper end point of each 
pole should be within a threshold value. These verification criteria are also used in 
selecting a door frame among those hypothesized door frames sharing the same top 
bar, which can be generated when a door frame has more than two distinct poles. For 
example, a door frame having two door panels can have more than two distinct poles 
if a center pole is detected. 

10.3.2 Detecting a Door Panel 

A door can have several panels. When a door is closed, it is difficult to distinguish 
panels from a door frame. However, detecting a door panel is easier when a door is 
open. The panel is attached to a door frame and has a rectangular shape. In the cur- 
rent implementation, our system tries to detect a door panel only when a door is open. 
The opening of a door is decided using functional evidence described in Section 10.3.3. 
Detecting a door panel helps to detect a door. 

Detecting a door panel is similar to detecting a door frame except that the door 
panel should be attached to the door frame. Searching for a door panel is done near 
two poles of the door. After finding an horizontal segment reaching a corner of the door 
frame, a vertical line reaching the horizontal segment is found. With this horizontal 



line and the vertical line, a door panel is hypothesized. The same verification used in 
door frame verification is applied to verify a door panel. 

10.3.3 Finding Functional Evidence 

When a door is open to pass, its opening gives functional evidence that consti- 
tutes objects seen through the opening. Thus detecting objects inside a door helps to 
detect the door. To acquire this functional evidence, we collect segments inside a door 
frame. Then the segments are checked if they are behind the door by a minimum dis- 
tance set by expected accuracy of depth determination from the viewpoint of the robot. 
If so, functional evidence for a door is claimed to be achieved. Moreover, these seg- 
ments behind the door mean that the door is open. 

When a door is closed, the functional evidence is not available. 

10.3.4 Localization of a Door 

After a door is found, the location of the door is represented in an s-map for nav- 
igation. Representing the door in an s-map is very simple. A vertical line becomes a 
point in an s-map because dropping height information of the vertical line renders a 
point. Thus the door in the s-map is a line linking two points generated from two ver- 
tical poles. 

In addition to the location of a door, the facing direction of a door should be 
known to the robot so that the robot is able to reach in front of the door. The facing 
direction is decided considering locations of both the door and the robot. At first, two 
locations, which are perpendicular and a predefined distance away from a door, are 
computed. Then one between the two possible locations is selected based on the dis- 
tance between the robot and one position. The nearer location is selected because see- 
ing an object means that the front part is always nearer than the back part. 

10.3.5 Results for recognition of Doors 

Figure 10.4-a and 10.4-b illustrate recognition of an open door for an image 
scene shown Figure 10.1. In this scene, there are two doors. The right door is open 
because it has functional evidence of an open door as described in Section 10.3.3. The 
thicker lines in Figure 10.4-a represents an open door. Moreover, the center position 
of a door and the front part of a door are represented with small circles bridging the 
thin line in Figure 10.4-b 

The closed door in Figure 10.1 is also detected, but is not shown here separately. 

10.4 Recognition of Desks 

A desk has the following significant surfaces: the desk top and the legs. The most 
significant surface of a desk is the desk top. Less significant surfaces are the legs. In 
addition, evidence of a desk may also be found by detecting the function it performs, 
namely of supporting objects on the desk top. 
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Figure 10.4 Open door 

10.4.1 Detecting a Desk Top Surface 

The most significant surface for a desk is the top surface. The primitives for a 
desk top surface are as follows: horizontal orientation, height range between 60 cm 
and 90 cm, rectangular shape, and workable size. The size is assumed to be from 40 
cm to 2 meters in each side. The shape primitive is loosely preserved. Although the 
system tries to detect the rectangular shape, it allows the desk top to be an arbitrary 
shape. The desk top is initially detected using perceptual grouping. Then other signif- 
icant surfaces are used to detect the desk top correctly. 

The detection of a desk top using perceptual grouping can be done in two stages: 
collecting candidate segments for a desk top and perceptual grouping for a desk top. 
In collecting candidate segments, orientation and height primitives are used to re- 
duce the search space. Segments that are both horizontal and 60-90 cm high above 
the floor, are collected. 

In perceptual grouping, collected candidate segments are grouped into a rectan- 
gular shape having workable size. Perceptual grouping is done in four steps: col- 
linearization, L-shapes, U-shape, and rectangular shape. In the first step, possible 
desk top segments are collinearized based on the angle difference and the gap be- 
tween two segments. The gap can be as large as the size of a desk because a large part 
of a desk may be occluded by materials on the desk. In the second step, collinearized 
lines form L-shapes based on angle and gap between two lines. The angle between two 
lines should be perpendicular in 3-D. The gap between two lines should be within a 
threshold value. In checking for a gap, a 2-D gap as well as a 3-D gap is also used to 
recover errors caused by partial or wrong matches. In the third step, L-shapes form 
U-shapes. Two L-shape can make a U-shape if they have a common line and the other 
lines have the same direction. Moreover, the size of a U-shape should be large enough 
to be a desk. In the final step, U-shapes make rectangular shapes. Two U-shapes can 



make a rectangular shape if they have two common lines. The rectangular shape 
should be large enough for a human to work on. 

The detection of a desk top with help of other significant surfaces is done while 
detecting the other significant surfaces. The other significant surfaces can confine the 
domain of the desk top. The details are described in Section 10.4.2. 

10.4.2 Detecting Legs 

Detecting legs of a desk either adds confidence to the desk recognized with a 
desk top surface, or can help to detect a desk if a desk top surface is not detected. Miss- 
ing a desk top surface occurs when there are no rectangular shapes, U-shapes, and L- 
shapes that are large enough because of occlusion by material on the top surface, or 
by material in front of the desk. This missed top surface may be recovered by detect- 
ing legs. While detecting legs, a domain of a desk top is acquired. The details are de- 
scribed below. 

Legs have four primitives: vertical orientation, height range between a floor to 
the desk top surface, no common shape, and size that does not exceeding the 2-D desk 
domain with respect to an s-map. Orientation and height reduce possible candidates 
for legs. Then only size primitive is applied to group the candidates. The details of de- 
tecting legs are described below. In addition, the algorithm of detecting legs are sum- 
marized in Figure 10.5. 

1. Collect vertical segments 
2. Filter those reaching a desk top surface from the collected segments 
3. Select those inside the 2-D domain of a desk from the filtered segments, 

(a) Find the 2-D domain of a desk with respect to an s-map 
i. Find the 1-D domain for a column coordinate 

A. Acquire an initial column domain 
B. Collect possible legs inside the initial column domain 
C. Confine a more accurate column domain from the collected possible legs. 
D. Collect more possible legs inside the more accurate column domain 

ii. Find the 2-D domain in an s-map 
A. Collect the segments inside the column domain 
B. Grow a rectangle containing the collected segments if they are within a reasonable range 

(b) Select those inside the 2-D domain 

Figure 10.5 Algorithm for detecting legs 

Detection of the legs of a desk is done in three modules: collecting vertical seg- 
ments, filtering the vertical segments that can reach desk top height, and selecting 
the vertical segments inside a 2-D domain of a desk top. Collecting vertical segments 
is done by checking vertically of a segment. The second module is easily implemented 
by checking 3-D information of vertical segments. The final module needs to find the 
2-D domain of a desk with respect to an s-map. After finding the 2-D domain of a desk, 
more possible legs are selected as legs if they are inside the 2-D domain of a desk. We 
describe a method of finding the 2-D domain of a desk. 



Finding the 2-D domain of a desk is done in two steps: finding a column coordi- 
nate domain of a desk in an image, and finding the 2-D desk domain in an s-map. 

In the first step, a column coordinate domain becomes more accurate when it in- 
teracts with legs. The method attempts to acquire an initial column domain. Then the 
acquired column domain is used to collect possible legs. Next the possible legs confine 
a more accurate column domain. Finally, the more accurate column domain is used to 
collect more possible legs. Among these procedures, we describe acquiring an initial 
column domain and confining a more accurate column domain because collecting legs 
in a column domain can be done simply by checking column coordinates of a segment. 

Initial column domain is acquired either from segments at a desk height or from 
a detected desk top surface. The initial column domain should contain all the seg- 
ments at desk height or segments of the desk top surface. 

Confining to a more accurate column domain is done by using a presence row. 
The presence row is a single row indicating if a column coordinate of the row is occu- 
pied by a desk. This presence row is constructed by dropping the row coordinate of 
possible segments of a desk top surface and marking its coordinate as a filled cell. 
Thus the region occupied by a desk is marked with filled cells. After making the pres- 
ence row, the extra possible legs are selected among all the possible legs using the 
presence row. In the presence row, a band of continuously filled cells is considered as 
a desk if the band is sufficiently wide. Thus possible legs under such a band become 
extra possible legs. Conversely, the band having extra possible legs can be considered 
as a desk. Therefore, such band becomes a column domain of a desk. 

In the second step, a 2-D desk domain is computed in an s-map represented in 
terms of width and depth. A segment with desk top height is collected as a possible 
desk top segment if it is inside a column domain computed at the first step. After col- 
lecting possible desk top segments, a 2-D desk domain is grown by attempting to con- 
tain the desk top segments if they are within a certain range. The growing of a 2-D 
desk domain is described below. In constructing a rectangle containing the segments 
of a desk, computation time is reduced by transforming segments into another coor- 
dinate system. The coordinate system allows checking if a segment is contained to be 
easily performed by checking its row and column coordinates. Among all the segments 
of a desk top surface, the longest segment is selected as a reference segment. Then 
row and column coordinates are rotated so that the reference segment is parallel to 
row coordinate. This reference segment generates a desk rectangle of which one side 
is made with the reference segment and the other parallel side is made with a small 
perturbation of the reference segment. Now other segments are also transformed and 
their coordinates are compared to see if they are inside the desk rectangle. If a seg- 
ment is not inside the desk rectangle, the desk rectangle is updated so that it can con- 
tain the segment unless the segment is too far. Finally, the desk rectangle is inversely 
transformed to a world coordinate system. 



10.4.3 Finding Functional Evidence 

The function of a desk, to work on, can generate functional evidence. When some 
objects are on the desk, these provide functional evidence. Thus objects on the desk 
can help recognize the desk. The objects on the desk should be inside the 2-D domain 
of the desk and reach the desk top. 

Detecting materials on a desk top is accomplished in two steps. In the first step, 
segments inside a 2-D desk domain are collected. These segments can be efficiently- 
collected using 1-D and 2-D filtering. For a 1-D filtering, segments inside the column 
domain of the desk are collected. Then the collected segments are further checked if 
they are inside the 2-D desk domain in an s-map. In the second step, segments reach- 
ing the desk top are selected among segments inside. In the current system, segments 
one or both of whose ends reach the desk top are considered as segments reaching the 
desk top. 

10.4.4 Localization of a Desk 

After a desk is found, localization is done in an s-map. Location of the desk is 
simply represented in the s-map by dropping height information of the four sides of 
the top surface. 

In addition to location of a desk, the front direction of the desk should be known 
to a robot so that the robot can reach the desk and do some other work, such as getting 
a pencil in a drawer. To find the front part of the desk, common posture is utilized. A 
desk top has a rectangular shape. Moreover, either of longer sides of the desk top is a 
front part of a desk. In common posture, the front part of a desk faces a direction that 
is easily accessible. This implies that the front part of a desk is nearer than its rear 
part. Now detecting a front part becomes detecting the longer side facing a robot. The 
detecting of the front part is accomplished in two steps. At first, longer sides of a desk 
are selected. Then the nearer side between the longer sides is selected as the front 
part. This selection can be further verified when a robot approaches the desk and ac- 
quires more details of the desk front. 

10.4.5 Results for Recognition of Desks 

Several tens of experiments have been conducted to recognize four different 
kinds of desks in many different viewpoints, distances, and settings. Three of the four 
desks have a rectangular desk top, but have different shaped legs. One of them has 
drawers in both sides. Another has drawers in one side. The other has no drawers. 
The desk having a round desk top has only a single leg. The recognition system has 
successfully recognized the four desks in the experiments with settings of a monitor 
and a chair. The errors in orientation and size were within 20 percent in experiments 
done. Results of recognizing desks are given below. 

Figurel0.6-a shows an image taken by our robot, Antigone. Detecting significant 
surfaces and functional evidence is given in Figure 10.6-b, -c, and -d. Figure 10.6-b 



represents a detected desk top surface on top of matched segments. The thin lines are 
matched segments. The thicker lines are detected desk top boundaries. The bound- 
aries are generated from a U-shape candidate of a desk top surface because the other 
side is occluded by a monitor. Figure 10.6-c displays legs under a 2-D desk domain. 
The current algorithm to detect legs has loose criteria for deciding whether legs are 
reaching to a desk top because self occlusion and partial matches may prevent legs 
from reaching to a desk top. Figure 10.6-d illustrates the functional evidence of a 
desk. In collecting functional evidence, the current algorithm collects only segments 
reaching a desk top. These significant surfaces and functional evidence allow our rec- 
ognition system to recognize and localize a desk. The recognized desk is localized in 
an s-map in Figure 10.6-e. The front part of the desk is represented with the thin line 
and the small circles. 

Figure 10.7 displays yet another desk scene. The desk has a monitor on it, and 
is occluded by a chair. Figure 10.7-b illustrates detected significant surfaces and func- 
tional evidence that are represented as thicker lines. All four boundaries of the desk 
top are successfully recovered although front and rear boundaries of the desk are oc- 
cluded by a chair and monitor respectively in Figure 10.7-b. Moreover, legs and func- 
tional evidence are successfully detected. Figure 10.7-c represents the recognized 
desk in an s-map. The front part of a desk is rendered with the thin line and the small 
circles. 
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(a) Image (b) matches 

Figure 10.7   DeskB 

(c) S-map 

Figure 10.8 displays another desk scene. The desk has a monitor on it. 
Figure 10.8-b illustrates detected significant surfaces and functional evidence that 
are represented as thicker lines. All four boundaries of the desk top are successfully 
recovered although rear boundaries of the desk are occluded by a monitor in 
Figure 10.8-b. Moreover, legs and functional evidence are successfully detected. 



(a) Image 
(b) Top 

(c) Legs (d) Functional evidence 

(e) s-map 

Figure 10.6 Desk A 

Figure 10.8-c represents the recognized desk in an s-map. The front part of a desk is 
rendered with the thin line and the small circles. 

Figure 10.9 displays a round desk scene. Figure 10.9-b illustrates detected sig- 
nificant surfaces that are represented as thicker lines. As seen in Figure 10.9-b, a part 
of the round desk top is detected by perceptual grouping of a rectangular shape. Then, 



r   r 

(a) Image Ob) matches 

Figure 10.8   DeskC 

(c) S-map 

the missed part of the round desk top is recovered with help of legs. Figure 10.9-c rep- 
resents the recognized desk in an s-map. The missed part as well as the detected part 
is contained in the 2-D desk domain. 
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Figure 10.9 DeskD 

(c) S-map 

10.5 Complexity of the Recognition System 
The complexity of the recognition system depends on a target object for recogni- 

tion. In most cases, the complexity of the recognition system is decided by that of de- 
tecting the most significant surface. Because the most significant surface is a key for 
recognition and helps to confine domains of other significant surfaces, it should be de- 
tected correctly or at least have its domain selected roughly. 

In the case of recognizing a door, worst case happens when half the segments are 
vertical lines and half the segments are top bars whose scopes are whole images. Then 
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0(n2) hypothesized door frames are generated. However, the complexity of detecting 
a door frame can be 0(n) in the average case because the scope of a top bar reaches 
two vertical lines in most cases. The complexity of other significant surfaces and func- 
tional evidence is 0(n). The total complexity for recognizing a door is 0(n) in the av- 
erage case or 0(n2) in the worst case. 

In the case of recognizing a desk, worst case happens when all segments are desk 
top segments. Then generating L-shapes has complexity of 0(n2). Moreover, generat- 
ing rectangles from L-shapes also has complexity of 0(n2) in the worst case. There- 
fore, the complexity of detecting a desk top is 0(n2) in the worst case. However, we can 
reduce candidate segments for a desk top by utilizing natural posture and primitives 
of the desk top surface. In most cases, the number of the segments of a desk top is less 
than some constant number. These constant number of the desk top segments allows 
the system to have the complexity of 0(n). The complexities of other significant sur- 
face and functional evidence are also 0(n). The total complexity for recognizing a door 
is 0(n) in the average case or 0{n2) in the worst case. 

We have analyzed the real computing time for recognition from 3-D segments. 
The computing time was measured in tens of laboratory scenes using Sun Sparc sta- 
tion 10. Although the current system has been written in Lisp without optimization, 
it showed promising results in terms of computing time. For the case of doors in lab- 
oratory scenes, the computing time for recognition was less than one hundredth of a 
second. For the case of desks in laboratory scenes, the computing time was less than 
one tenth of a second. In addition to this computation, the edge detection takes about 
40 seconds per image. The matching also needs about 10 seconds. From matched seg- 
ments, an s-map is constructed in less than one tenth of a second. Among these, we 
estimate that edge detection and matching may be done within a second with parallel 
processing at a reasonable cost. Thus we believe that total computing time from im- 
ages to object recognition can be less than a second with low level parallel processing. 

10.6 Conclusion 
We have shown some experiments on generic object recognition of desks and 

doors by using representations inspired by their functionality. Some of the evidence 
we use is rather weak by itself, however, it suffices in the context in which such objects 
are found. We believe that our methodology can also be applied to other large objects 
commonly found in offices and laboratories. 
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